因為其中會包含2個偶數,其中一個偶數會是4的倍數,且至少會包含一個三的倍數。 24是4的階乘,這代表了4個相異的物品任意排列共有24種不同的排列方法。 例如序列 ,這24種可能的排列為: , , , , , , , , , , , , , , , , , , , , , , , 。 24乘60的矩形被十個12乘12的正方形格子完全覆蓋,即12爲24和60的最大公因數。
VT/wCkfxpoRTya4z0H9Ffwr1RkZwq4x9YEDB5YwPI7+6t8mKjEjmpJjUlKv/dH4sP4ikHX+Yh9z7/Y9ZahogR0gpPNPndeqYPI4c/xBpmyVmlubIK6M0Ne4rBDWYpiZVxMgPf8KEFGeY8cUsk3kCM5xy6Y2x7qunqQ46GGa9Br2UV4FpyYtxMHXessUqyjpnlvnx8vLl9tYNVkyHETFLgfH7KQUeVLqatBhLaxi1e5pQp+d9vPb+2sdG3n45+zH25q7uCsJishSxTOcDHI4HIbb7sxPPfc/KvEj3O2dv2T8zybO2fj8qUaErmApzbS9Nt8b4GdgRjPQHO/jgeFJJET57fAe/w3IHvx40sLcgdfltjYjfn9n31KYOJ4PGndvNvnn796bRJmlhHyP8OXhTk7Mzyjcfxw6uW/PbkeX4Dxp5wuZUcMymRcZKd4U1ZBA9pRnbOcY5imdseR60rkHwH5/O1TVjm0ewyi8lmtzKWcsADjIGMhQMjbmQBn45wKRikxv7x8xg/ZQ7ZP5P3/AMaB7+nhS7WQxycndss6z4vJFjS2OuDhk3P7rArvuPH+OzcI9IIU/rLaFwdvZLR5/wBLeQZ9wH4aReydcnOPDHwznry86bxn4/n54xXWpU3LR7fE8dU7pa21Ln4R6Q4AQBbaN/8AKhgM8xnulOPLGM5pW/7aquoJAPZ9tQZMjfnyQeeN6q2yt9hzz/dy/D8Kk7yfGDzwMGtccLDr6syTy72JPifpHnfYERD/ALMb/wBJ9TD3jFaxLds+rUzMc5JZixORjcnJPIc6QeMath5+O3QUvbRe0fMf21rpU4x/KrFG1YY260/Q7fn54pY2e5GPHpg56+fwoaLp1rQkLlUEZ7XV7vEfj4VhaXxjV0KhtWBqYZIxv7J6HbFP7Nuh6HHwrDitqOY5eFWyiZO5q9wNTZAI8sbH3UjGxU78vdyrabWAHO2Tg4zRcWeB0qMmoJkbZptkYyd6eiQ78v4UlImDjl7ufLwpGckePxGP41a5eLC5eoqeWnbyb5O+3X7KaX533AOwzzG+NztjrVHIdFjK9mLHxPzpHuznAA6ZOATnqfHbl8POnk0Q3wBnYc23yMnHtfkZpoi+0Tkbaj18+e2PtrLNmiAhdjbkBueRBPTYkdeu/jTOZwBnB2BOQw2+wkUtxFjgZOTg56e4kc8kbZPPA8ax4XPoKPjUFk1lTyYKUJU7cmxisspGhHYnp/7TzcI4JbrbSdzODZ2cb6EkIKxlpCVkVkJMcEgJZebeOK5qi9P/AB4gH6dscY/xWzzv5fRSTtvtmukPSZNwfjttAJeJpbKjd/3YuLaCcOyFNM0dwGZSoLjYYOSQSMGtH/8AIbwH/PfMBf8ApvDuQx/2XlXjMLKjG6rxd7+yegqKbS7t6e8g/V99LnGLziltbzXneQs0rTILe1QlI4ZX3ZLdXUF1RcqQfaFW/wBpG7/tTZRcxY8Kubzn+3cP9GII8lKN8R4VE+iTsRwXhtybmPi0Uz9y8IE95YlQHKEsO7VG1exp3OMM21S/oVIueMcZv1ZZINVpYW8qsrIRDCr3IR19krrMbZBIJY+FIxMqedypKyy22tq9P2YympJWluc3+unxQTccdBv9HtraA9N9L3J3O3/6gb+8dKrO2XKspIC+Phkbg7YwRtmnvpJ42LviV9chtSSXMrIwzvEG7uA/GJFNWP6rXZe1muppb3uzaWlr9IcykLBrLqIu9DeyyKomJRjgsEBDDIPWotUaF3wX38zJUblUsjpj1dr+e+4Xov4NUTIYEeUDF1bFAA7JzxjKd4QBIArjOrUa79cb0gXPD4YbCzg+iW80JjFxGAqhV9lrW2VNomVMEucNpcaMEFhWvp69Ze4upRFw53tLeKRWWUexPOyMCrsCP1cIYAiE7uP5Qb92trcV9IFtxns9eNMim6t7cs8K5BS7CkWs8G5fu5ZcBRk5BliYt7WrkSoyjJVZR8rey4XNikrZUzi2C1GnB+/AHTn5V0zwLgvHuN2kdrJ3Nrw/EP62S3MRKxae7WGPIklA0g6sLG2B7dbxYdgOB8ARJ7+Vbq6xqTvlEjlhje0sVyFAYDEzh2QneVQaqv0tetTeXWqKxU2EJyO8yGvHG4zrGUgz4R6mB5SVqnVdZpU47fqfD3FFHLuxz6xno64bwmwit43FzfSTxmR5XU3CQhJHZ0hU4gjeRY484ywYgu+Ko+NA2Bkj2VUbZ5KM5OR50yhgLMzyapWYlmJYlmY7ks5yzMTk5O586c96AcqMeROfI+FbaFOUY+Z3Yqck3oYTQDGxztnGCNup8NsZpdEyg+APuUsxPy299Ni2cDHIY9+5P8afQIe7LbEBmBGcEggA4+J505rS5XNYi7i4BXGkDfI2Gw8M8yT1JppcpjT5rn5k/wAKcTFemonzwB9m/wB1YTlSF9rBChSNJ6HPOsdRGmDGNeF6GNYkVmZspsyBpRKwQVmtTEtJWFdFCivFpaMVdBueisgteYr0GmELqe4pCQU4xScq0y+gtxvsYrH4fdn+2vDt8KcREgHHl7WPaGzDAYcg2o5H7WB4ViF9/wCfHc1a5RQZlE35zypVY6wRemB4ePhy3+HxPwVi65+G+MHzz921MjMs6YpBBz9xG/LPh4ZpdYFAOc5I2wBjY9c+Y5YOKxil+Hh1A35DJyBz6097wsMEkLuAOYGfuyT8vHFUqWsasPTGHdA4xq5HOwxscjSc5I68unyUSBskjJwDk89hgHqdvlWycA4P38ioPruxGTsMkjHtF2XHU7L1GT0sP0m+ih7KNJJNOl9Oo51YbmQTpJwcFjj5jY1ya3aNOlNU3u+n3vw5nVp9nuos10uWurtvYpbRnPtYOCSMEDpyPmBmsl28ztvk4xz8Nyc/DfnmpbtVaKjgKUYY20HZRgYBA3Jx+0Sc5J9zKBQBuDj35Azy26bjPPcGujRq54KS4nOq0Mk3F7iliAf7NiMb7fZ4USr8fP8APWkdBGRg7HHu8vHp49KUfOck88nx9wwDtnxNalLQzTj0MOVY5rICsoockfnHLc+A57jJ25VE5KxWEW2b/Fa6iP4/nNPI7LBxg8+gzSHCJwP2hnGMnPTw99TFjgOMsGzsCN+Z8v7fCvR042PAueg9jtsqMYzjf7Nh+Pv6YqPkhOdJqYZdOTv4fn7qOH2xJJbb89a0RREnfQjmssbnfFepDyI3JOAOZJ6ADr7q2bg/BWnkEUal3YgAdPMk9FABJPQCt37bdrbDs5CNQW74hIuUiUhZNJyNROGMFuCCNWC0jA4DaToydpdqUsFHXWT2j9XyRowmBqYh2Wi4s0/hHo7vZd0tZQD1l0xbf+tKE+8DfpU7/wCQ2+brbp/pSv8A/hE1Ub2m9aXjE7HRPDZJk4S2gjdsdAXuO8J82Urk9ByrReI+k/ikuS/FL0+IW6mhTff6iMi/DFeYqf8AqMU/yqK+Df7v6HZh2HRW7k/T+DpntD6F76FS4WOcAZIt3Z5MdcI8aMx8k1N4CtFE+fZwc5xjB1ZHMY55GOXkar30ZenjiVjJrF1JeR/twXcskyOo3PdtIxaJ+eHQ8zllcAKeuO0nAxxmyS84bLBbTXMSvIZEDOw04EE0kWpo2jcFGYK+dPI6VxswH/p5N5cQl/8Apaeq1+X9mfE9iJa0m/c/oc58T4gkezsFPhzPxAzj3Go637TRk4WQDPQ5Un3agPsrWPSh2KvbCXu7yJkLFtEgOuGUDmYpRscZBKHS6grqVcitMkl8a7v4nmWaNmjCuzraSvcuB7jrSf0oVWvZ/tE0ZCsdSct9ynmPLxX5ee3GfHh4+f593StdLFxqq6M9TCypuzJoXAz5ioftFdiNVPNn1FVzyVTp1Mf5zBlAxvoY5Gwb23uuu1RfaK27wgggEDTucjGSeY95qmJnLJenuXw8I57T2HfDeLCRd8hlIOBjB22xyx1yKWCkAnORjAOfEjpnbAz86heF2unbOWPM+4HAHWl8/ke/++s0JyyLPuPnCOZ5Nj2Y00uJ8/h0+Q2ryRqSSIn8+eKVUnyGwjbcQvIFKjPtdcHkPMf2eG9NE4Wv7vP31ePq6+hxOKfSDNLLAsHchTEqe00neFwdYYeysaHbH1xUN6wfYaDht2lrFM0xMEcrd6FVsu8qqo7tFyAIgSWOfaFcx4ik6vdP83u+puUZqGZbFWycKQc1574BP271stp29vorY2kN1JFblHj7mMIqaZCxkGoLry+psnVn2jvTDhvD2lliiAwZZ4YVIyRmV1Qe/d66wHqiWm3+OXW2f2YPP/s/OkYutQp2VRL0uMowqS1T+ZxjZwlBtkZ2yMgbdPhTuS+bQUDvpYoXTPsOYzIYmcZ9op3j6QRtkmuwX9UK1P8A+tu/lB/u6y/5otrjH0279+IPPb+Tx/d76zfiNC1r/JjvDzvc4shiAp7w3iEkZJjdoyQoJU4yFkjmUN0IEsUUmDkao1PSnPam2SOeaONi6RTzxKzY1MkcskcbtpAXUyKpONsk0lwLhEs8ixQRPPK2rTHEpdzpBZsKPBQSfdWluNuhXW4z4gXkcySu8rscvJIzPI5/eeRyXY4wMk9KyCActq3RfRNxT/N15/sH/Cs29E/E9v8Azdecv8g/4VWM6a4r1QNyfBmnQAHbw3+eAa8kby5nnUx2n7H3dqFa5tprYOSqmaMoGIGSFzzIG9Q8rjSDnxGPuP30yNpK6I2eoCUDO2+CMj5HH58fg4J1ADbCqeRxleY1Z2znbfxqO1V0p6vnoDiv7SWaeaWEmYwqIu7wVVI21Eujb63ZdtvZpdSrGlHNIs4NuyOaplAz7sj2gftwRmmEhre/Tr2XhseIz2kLvKsPdDVLo1FnijlYDQqjSveBOWcqa0RhWOclLVGqmrCTUBqur1X/AEPW/F/pSzTzwPb9wyiHuirJL3oJPeIxyrRb4wMMtQ/rMeipeE3UUMckk0UtuJVklCBtYkdJI/YCjCgRty/6ysnerNlNcXwKwr1avj1Y/QGnFYJ55ppYI0mWCLuQmXYIHlLd4rbDXGo09e8zy2movV6tH40eFx3VwyxWBvJ5SIdaOZESOEAR6RlJEkOQSQ4xjep76KbXIlzRzmlLIa7LX1N7T/027/o2/wDuq9HqcWn/AKbd/wBG3/3VR4qmCmjjcfnf8PuoC11Z6SfVctrWyublby6ka2tJ5kRxDoJjR5FQ4jBCls5CkfWNcpxtmn06qmrospJsyT5+GNt+nTl5be+sgn5/Pxr2JR4ge/OTsTsAD4Y8BkZIp1YxBmCswiB21sCQuM/WC7nJ5mruVlcZGNxuVHh49ce48unPz+OwUG3Mbb+/O5xgY26H50tfRaGK6lbTtqRtSHrqU4Gx9wrpX0YehCyhtI+I8Zm7pH0SJA7dzEFbeITnAleRxhu5UrgEhgxzhdSsopPmXeWK1Oe+x3Zie8mEFrE08pyQqYBVRjLuzEJGoyBrdgMlRnJANsr6rfFsZxaA/um4bV474hK+X1q2rtH611naq8HC+HIECukcp0W0QYF1En0eOMs6HCygF42YNg6DmqCvvTXxZ21fpG7Q4OQkzKp3JyVXCA7geyoG2wGTWSWOnwsKlJy2Vi4OK+qhxJEDJJaTPjLRpJIh90byRKjf63d1FWHq3cYKhzBEhPONriIyjruFYxb+Hedd8b1W/YP0y39rdpctc3N1hmZ4ZrqcxTEoyqJRqYEKSHA0/sgDHMP+I+sPxl5Gk+nyR6mJCRxwrEo3wqxmNvZA29osxwNRY71XxtS1tPQrGU47EzxHs5xDhzI9xavbANgSOiPEGz7IM8JaLOdxliWxjcbVM9tfSLc3iKsjnSOa7BehGMbkbDnyzjxrYvRj61t1GVS+VeIRMgMkkaRW9yhJZWjWMslvcbmPAHdEgtzxgb36ceDcOXhK3tlaRabuW3kWZRoaISe2CE/ZVivcmFcKGkzpODSJqnVmpSgs3B/H6HZwHaDTVOpx0T00vvvt1tvtY5mubYaRjJO5OdgNxtgjyzkc9WOlRyqVPIEHx5HpkcuX2U5S+XPTfGCBt8RjbkM8870+jkLLpByAWONzjP1iBtzAz8K68ZOCtw6kypQqyvF6jCxttWTvtudidvHnzz4896WW33UDB3BJbYbYDZZlXCbZ3Gw8cZqVihC7lMZ3/aIYfVB3OAVbLAjG+Rjwnr2xg7lTGxMj6taY2ULuuMscjAPnvz3pyndXM1XDZHFPi+F/V8lw5EXd8KhhlmjJivAISscsMskUZkIRxMraRr7tWYGN9KtoIySRUXwu13zjOB4+W5+Az1+Bqahty2nVqOkFSxJbAyeR1YGFIAwR/GpWx4SMjBxtvyJJPMg88dMkk8s7muZVxSpxak7u336nUpYC7UkrelzWLc8vz8q3rgtyDpCg74UHbPLGDj386ryU461snZTjOg+PX+2vc4ermZ8aq03Es/jXBXhADqQ2Bz++kgx05+edqT/5U99s76sD2Sx9ryB51v8A6KuzwnnQHDpGBK+eRwfZUjkdT49k81DVodbuKLqVeCu7ffHYvTp97PLDiP8Ah97Fwawk4jd/yrrohhyFdi28Vuox9eUrrc4OhFyR7DZ4L7W8Zmuppbq4fXLNIZHYnqeSKCSQiKBGq8lVVA2FW164fpFa+4k8SSZtrMmCIKfYaUbXE3gWMmYg2caI1I+ucwPoc9GD3zGTBECEKZCNmbqsY/ax1PL7q+aY3GSrVJVam7+0ke1weEUUqcPvqzSey3Y25uT+piZh+8Rhf6RwPlVy9j/V4dgDcTY/mQrsPe5/gK6C7N9mEgRUVVCgY5b7efw8K2FYceVcqVacttDrxw9OHX3/AMFLXHq8WZTA1K2CAwYk56HB2Purm/tb2euuF3enW8Mq5eKeB2iLLn6yMpDDzXOx8eZ7+ijqqfWe7Ei6smdR+ut/1qEcyP24/wDWG48GAqaUpRer0F1oRmtFqY+hXtxD2ispOF8SObyNTNFOFVWcL7KXMekBVmh16HTAEiMeYaQLyr237Ny2txLbTACWGRo2wdjjBDryOh1ZXXIyVYbU/wDRd2laznjuowO9t3EgUnGocnUkg4WSMtGxAzpY46VfPru9n4bi3suNW26XCxQyezgsrxtLbSP+6yBXhbO+8S7acH0XZmKcJd29n+/9nGxFK6uctMh8K3Hs1EXjB/dJXPhjkN9uRFaVGK3vsYuIckfWdiPsX+FenwF5VrPaxzsclCjm43RJC06ZGfI8vfXhteQGDn+cCeeNxzH8a9ll93Plj7fDp91NzL+QNq7UrI4quxpc7E+W1JRynz5EbU7uVHXn4Uy+z8/n51iqPU0wehmdgepxsAcb9N+m9dp8P4x2YjjRGbhBKoilmhtizFQAWZjHliSMljuSc1xFO9dp9gvV/wCFGwtpbu0DzGzhlndp7lfbMSvL7KTKgwSRsANq4Xa84qMXJyW+3w3OlgYO72fvLX9HC2Jh7zh6WywSMTqs44443ZToYnu1UMVK6c78sdK0ztn2l7PG4f6Y3C3uYz3bm5jt5J1KbaGaRC407jGdqmvV44esPCbIKgiVrZbnRk4T6QWuSuW39kzEZO+29aF6OvQjwu9to725tO+mvTLfO7TXCEi6lkuIxojmVBpjlRNlH1cnJJJ84nFTbk371udTW2iIXilzwi44nwiDhsdiW+mTXc72MMKFFtYHkiWV4kBCtKVKgnBZB1ArYvXb7Wy2nDF7iWSCWa7hhEkEjxSKoWSZyHjKuAREEODvrxyJqoPUn4bFJxi9nhULBDFcCIDJCrPcj6OFZiWIEMTrkkk7HJ3qxvXU7AcQ4gLOOytzPHEbiSX9dbxYdhEsW08sZOF73lke0K01Eo1oxk7pc/UrHWLaRyVJ6QeJ6Sf0pxH6ucfTrvwz/lq+jk10bPh5eR2c2tiXkkkYu7GCDLu7sSzsxQsWJJJJJzmuJ+zPoI4nHdWhubTuYTe2iuzXNm3smZC4VI7h5HOgMdKqTgE7AEjqf1ueMdzwS9I5yRpbjpnv5Y4n+Ubu2OuKZjlTlKEadutvgLoZrPMfOrhucZO5OMk7nPMk+ZJ51ZPoC7ex8NvfpUkLzgQSxKkbKpDu0ft5bbARXXHP2h51XdmvsirF9FHoiu+JrK1qbfELqjiaV42yw1KQFifKnBGSRuprqVMvd2nsZ0256F9n1zIP833P+1i/CrP9AXprTi7XAjtpLcW6wljK6Nq70yhQAo/7Jzk1xF6VPR3c8NmSG5Eep4hMphdpEK6mQjUyIdQKZIxgBk332639Rzsm8HDnnkGk3k3fIMYbuVUJEx/0z3ki/wAx0PWuXicNRhSzx+Gppp1JOVmaf64fFoW4vwa3ndI4I2+k3Bl/ku6knjDCTOxDraSR7/vkcic78e1PZbx4P/4e2/3Vcr+tz2lW541csjB0t1jtVYbgmFS0o/1Z3lTw9nPWrNtfVHzbrcS8REX6hZ5E+ha9H6sO6azdrq0bjVpXOM4HKjuoKlDPJrlv7/qTmeZ2Vy3F7V9lhyPBx/7Pb/7qrZ7Im3MCNaiIQSDvI+4RUiYNvrUKAPa55xvzr5X2xGnUFBOMgc98Zxjr4V9OZXXh/DCcaVsuHk4G+Bbwch4/U+NLxuFdFR8zd7/L/S1OeZvQ5O9drtVw2YQCy+iyztcTSXU1ukYm/VoI1SeVVEjai5IBJB7n+aK5ravLOPbfn/GsrlCFJ8j92a1qn3cVEmLuy5/U17bw2PEna4lWCCa0liZ5DpjDq8ckRY9DhZEHm+OordvXo7W8PvIbOW1u4LiWCaaNkhcM3dSoGLkDorwIuehfzq4+yHq48Fa3hLWqzuIo1klW5uSHkCgSMe7nCAlwSQoABOwFc+WXo6t5e1X0K2hEdpbTxSugZ5AEt4YppdbSs7kSXOITvsJABjBNYVKEpueuiGM629BvZccO4VbQvhDHB305PISvma4JPgjsygn9lR4Yr579ofSLcy311ew3Fxatcyu+YJpIH7rV+oidoXXUI41RcEkZXO/Ou3/XN7W/ReETqDiS7K2SdfZlBM+3h9HSUZ5BmXxwfnpAu1ThIXTk+JK1ZtS+kbif+c+I/wDjrv8A31TPYrt9xJrq2VuJcQZWu7ZWVr26ZWVpkVlYGYgggkEEb5rQkFbB6P1/x2z/AP5tn/8AfirU6cbbL0L5In0T9YI/+aOJf/113/8AZevmhaN7I95r6WesOf8AzPxH/wDr7r/7TV80bUez86TgF5WUi7MWLV6GpNazreyybZuPoc4Q1xxGziWIzg3du8iY27pJY3nZugQRK2onYg45kCrZ/wAIT2gb6ZawLPkRwGbuUBVopHcjvXkDbu6KoVcAoqsQQJTq3L0Q8LteAcL/AErdMzXN3bx93Hp3USAzQ2sQxqVpPYaZnYKDGvLR7XHPG+Lz3t1JNK5knnkLux5ZOBgD9lEUBVUbKqgDlXIxVVSlpsi6eZojTXuKunsb6ElmXLTODj9kLp+0E/bW22Hq6RYP653OPZyoABx1x51iVRPY1+Hkt7HNAr1avbtH6uFyF1RMjnJzGSR7tLfwNadH6HL4Z1wlAOpyQfcFBPx99WzriU7qT2K/FdL+ij1mYYraHh9/YLPapGsOtNEv6sbKJLWVAjhRsSHzgD2WNUd2s7FTW41MMr1IUjB8wRnHnWs58yPAjx/h76IyT2K1KTWjOpvTx6K7M2qcW4Uwe1lIMiKWZFEj6O9iD+3GFlzHJA38mTyj7tlqiY2I8ts8zuOmRn4Y2rp/1UC17wXidq0qTSSNcgRqVV4/pFuFQldKomuVXlD4wXMhO4auYJIyCVZSrAlSp2KsDhlYHcFSCCOeRXbwFRzjaXArCo0mP4bj+djYYznG2MjAG2+SP4VI2E5xzOM7jORkg745csDJ39+doRQdvADHIDmSdzsSd9ic9Ogpe2lOeuOXMjy/PxrTVj5WbaFd5k5G3LK2dIBK6c8yRv4Ek9OeDvt4VsXBhqK7jJG4HjnAx7R2xjf2dyedavw6Ysuk7nIbzPLGTyzW4dlbM5ViuM8gN+mPnvjntXlcfNQi2/8AT0FGWZ3RVV3c0nb3uOtNpZKQVhX0GnKx8cqRuT8PFG8d66U9C/HZIOBcUvs4kRLgRMR1htgYTnbOJpWHwNcnG7xyrpX0QZuey3FYFBMkf0zCjdmxBFOuANzqOUA6kVk7Zrt4ZxT4q/377GjsyilXv0ZzN6HuxBv7tICSsYGuVhzCLjKg/vMcKPif2a7w7P8ACkijSKNAiIoVVUAAAVz16o/Bzqkm6aFXPXm23xOW+JroKfjyxkgK0jAZKoCxGeWoAEgHxIx514WbvI9tShlgrcdSYS0J6Y99NJKhP+WcpwWiaFM/thw2PeUC+eM8s+FNu0fEn0juw2T1xjnyOWwAPM7ct6VOUR8aMr6myKKwv7YOrKeTKVPUbiqN4nIkZeS7vbjRGU70prMKazhAxjjOnJIUMxXUw2A5VYfZbtDA8Tm0uBdGONj3TyMDq0kqJCyPNFkge1oOxJCttUJ6BOnle5yH6WuzzWk8kRGGRyV6ZRhnK+Kspz5HPUYq/wD0lDT2LsgfaLfRNJP7OqV5B8kynup16w3o5kvmtnUwxOshhLsXI0P7S6yF30suFXq0mNS5rcO1/ALW87NPChkKcNj0ox1RlprGPQ5ZcDUJB3ilSMBnyMFVI6GBqJ1YJvW6/c52KpNJztpxOIeC8KMhHRc+03gB4bjJPIYz58q3y0tNtK8lUYG/LAxSMChE0jCjfAG2/s7+BO321hcX528hjY5+6vo2GpxoLV6vc8ni60q70Wi2FXQDn+fKkJ5gM9PdvUdc3VILJTJVhEaD4jia42puz0mz1gRWWU7muMLEhweyM0sUIODNLFAPEGV1jGOmcsDX0R9N9wY+F3YjwrNbNbRb4xJPi2gAPj3kqAeeK4i9WnhHfcYsVIyFnac9QO4jkmQn/wBZGgB8SK7X9MPtmwt9/wDGOK2mQMfVtRJxFsg81JslU/6Veb7YqXqQi+Cv6v8Ao6eDjaLY79J85teF3RiHtRWMscI/n90Y4FxtzcoMUdrZlsOFTFMBbPh0gjA2H6mAiNR4ZKqo+FIemUa47WDODccTsI/esMovpV2/ehs5AfImtR9dPi3dcEuQDpMz29uPMNMjSL8YkkHuJrkU45mo82a2V9/g6eDBbW9n6yXMVvnygiEm3xuj+RUl6bvWak4fxCWzitI7gQrFqd5mjOp4klK4CMMKrrvnnnwrc/Uy4R3XBLUkYMxnuD5h5n7s/GJYzXEnpd4z9I4rfykgg3lwq7/sRuYYv/lxrW6lSjXxEs232hU5OELnQHog9JV1xvjto8qC3gsre6uFt43LoXKdwZnZgCzZuEC5HsBdvrvq2X/CF8X02FrADgzXneEeKQxSZHuEksR94Fax/g/OFZnvp8fUht4Fb/vGkkkUH/1MRI81qF/whPF9d9Z2/wDkrV5j4ZuJdGPfi1BPkVq0qcVilCOy/i5EZN07s52jGw91dJeoHxjRfXUH+WtElHhm3l0495F0x/1TXN9WZ6rXGe44zZNnCySPbt5iaJ0Rf9sYj7wK6WKhmpSXT9tTLSdppnT/AKzHolbid5wvGREklwl0w5iAiKX6wIILGJoVIyQ06tyU1P8ArJ+kBeFcNYxaUmkAtbRFAAViuO8CgEBYIgZAMaSyxqcaxVr184/Wk9I/6T4ixjbVbW+q3t8HKsAf11wMEg986jS3WNIeua4mGhKtJRey+/mbptRVyv8AsVwnv7iCE5P0i5gtySdz30qRsc88nWTmvot6y/Fxb8Gv35ZtHgGOhnxbpjHL2pRv0ri/1UeEd9xqyGMrG0s7eQihkKH/AGpiHxFdH+v7xju+FJEOdxeQoR/MjWScnz9uOMfGteM81aEPvV/0UpflbORPQtwrvr+yhAyJL23DD+YsitL/APLR9q7o9b7i/c8EvCOcix248++ljjf/AOWzn4Vyr6lXB+94xAekEFxcn+h3Az7muQfeBVz/AOEN4wFsrSDODLeGUjPNIInByOoDzxH36atjHmrwhy+/2QU9ItnFsHKsWp68ewHlSAs2chFGWdhGo8WchVHxYgVsqQIhI+kHqt8HEHBeHoNtVstwffcFrg//AHfgMDpXJnoa9IV3DfcS4hacKn4obq4lAlijuGESvM85j1QwSjMgaBihKkCNNjkY7M9Id4LLhVy6bfRuHy92OQzHCViHllgoqtvUN4MIuCo/W4ubmYn/AEGFsPhi3G3v8a4UZWjKXN2+o/icwesv6ULviMsEd1Zvw426ue4k71XLTaP1rrNHGw9lAF9k7F8H2jVYy2xUAkYDDUPMZIyPiCPhW8+sdxY3PG78oGc/Svo6qoLMTbolsQigaj7ULchvz61JdivQBxa7wVtGt0P/AFl6fow+MbA3O/QiIgjruM9GnKMIK+gLoViKkOBcS7maGbAbuZ4ZwrHSGMUiyBS2DgMV05wcZrqzsX6nKDBvb1n5Zis0Ea56gzTB2YHltHGee++1p2vYTgPCAsjx2dsw3WW9kWSYnB/knuWaTVgH2YsddudKlioLRal8xRnb31hL+84ddD9EmO2lgML3YkmMKCYiFWV2gWOQl5FAVWzv0AJHM8I2A9/310762fp7sr2z+h2TyTFp4nklMTRw93GS+lTLpkZjII8YTTgMdXINzHHy+Ap+Gsofltrt/otK7PQKWtLdnZY0XW7ssaKMAs7kKignbLMQuTtvQ8fs5zvkbDkAc4z57VKdk7jubi1nOMR3dtMc7LiOaN/abGkDC755b01setDpX107mK24NYcPnYz3irB3cirpX/F40inmbOSBIHKBRuS2eSmuX/RZwvW5bw2B+0/HAx8a6F/wj9kwlsZAX0NHLGw0nutSMGQhuWvTLJlSRtggH2sUB2QvJY0HdIDjOokgZJ6DOOW3jy6V56o/KOwls12dYejOzIiG3M/ZufuIqxrOHFUd6E/SYW/VTqI22xgYB8cZJ9/OrmuuNxIAWYKD47VWkkkaMQ5SeiJVY6ykgpnw3i0cgyjq3uINO3enoxu6Nb7ZdmoriJ0dQcqd8bjauBOPWRilkjP7DsnyJA+yu+e2/GhFDI3PShNcFcfuzJK7nfW5Y/M4+ylSazaGlXya/AvD1C+0oh4qYXKgXVtLGhPPvEKSqoP85Ek2PMhcb7GN9N3Zs2/EryN8+1cyzo2Oa3Dd9HknchVcoSNtSN1BAhvVG4Qs3G7IMdIjaWcYOCTFFIyqPe2CRvlQ3nVg+tbxPveMTLo0mCKC382wgnDny/X4A8AD1xXQwEmpu3IVTV6liqzbDx28QCRnIAHPB6kDHKnAjAHM7+PL47Z89qfW1thT4tjO4xzbfB67Hltj30ynjy2BnkDyAPnyLbZ8x9tbJ1M2h01Rya8yS4RaksBggg+Yxj8Nqur0W8O1SqMZAGskjOygYyOWC2B5g1WHZCw5bYz4bfL7Nv766M9E/BSI2c5AdtPXdUGWIO3Njj4V4/tmtnfdo6tNqlScjiGSSkNVek0nIK+knyex6TXV/qFWbLFfzs/6rMMRj5jVGryNIc/zJAuAN8nP1RXJjPir39T70nRWVxJbXJxBed0oc7pHMCyprHRJVk0M/wCyVjJwutly4+LlQko7/wBmjBtRqpyLK9GPCWtTdJFEhgMrTW575cG3JfuQO7Eg2XCcxupPWtt4yZw0ccKqiM+ZpjhmVevdK2Q8rHbVJ7K8zqwFMxxXs4LWVEQfqTEyJ/N0sGVPgGffwC9TSrQlgcAnbJwQD8ckDf3/AArw/mvrue0TittVwuVPKl8l7Kv0lpLaR4khiKoZvaVu8bUsSd2UbDgZkQqr5AyALLj7ONLblH0h2REZlH1igXUcgrnU6kHBGV2GnOVjnue6YMIiZGYIC7AsSTsAQzYXkTjHu6jdY7kKBq9kghTnmf53mKiMczbY2tpGKivjxZz9xrsvNG9xFJGJrS6l74qAsihvZwkiupI7sIiocZARORWrI7PxKVjBjVSqaFAA1BAMY5ZCDl4ZwOeKQ9J/EVGqSJ1lWNgLiOJsyx5Hsu2n21GAcg/zTjmaf9k7mNkDIAAwB25nbmTzPvNL2lluNm81JSsvevqOe0sJeJgv1tivvDAj3cufSof1ibtbTgfdp+rN3cKh07EmV5LqbOB+2sbqT1BNbMRnzztjx8q0r10uNxxWNtasQZpZ1lAHNI4lfvJFPIEtIkQzjId/3TXV7HhnxUdL6/39Di9pTy0HE5RluAVxknqfHbkB5bmo+Zd9t/fWUkp8c8+oOB/Hn+cUirV9Ek7nlINIU7mkZFxWx9lzEXAl2XqRzFMO0aJrYR7rk4J8OlTOCsVjVeYhMUoor0JQKymhu5f3qJ8J18Rnm6Q2bL/rzSxhT/QilHxrprj36zi9knNYLK+um8pJHtraD3Extdj4Gqk9Qbgum2vLggjvbiOAE8isEZfK+Wu5dcjqpH7NWx2OIk4pxKYbiKLh/DxtyaNJryQZ6/8AT4gfApj3eT7Rnmry6afL/Tr4dWpoV7UnvOKcPixkRQ8Qvj5MqwWcfl7S30/9E/Cjv8IvxnTbWUHV7ia5+EEXd7+83W3uPhV4cAfvOLXrZyILKwtgM/Vd3u7ib3ake1/oiucvW4jN32g4ZZkak02alcZ/l7p+/J8VEMSk+QbnScMv+ivwV/qMnsdP9jLVLHh0CSMEjtLGISO2wVYYV72RseAVmPxquLr0m9mVDN3nD2wGYhbVWdsAnCgQ5Zj0HMk1OetnxjuOC3zDnJEtuPPv5Ehb5JIze4GvnVaxDTuBTcJhe+vJtrUpVqZD6Geqzxj6Vaz3ghjtkuL2XuIYo0jWOCIJDGrd2AGcukrs5zlnIGFCgci+tpxbvuOXe+Vi7m3XyEcKFx/tXkrtL1aOECDg9gmNOq1ScjwNwTcNnPnKdunKvnf2m4r9Iu7q4ztPdTzgnwlleRdjv9UjbpTcHFOvJrhp9+hWq/IM6tj1UewjXvEom3ENm0d3Kw29pH1W8YI5GSVNX+hFLyOKqh095OcAAZJ8MAbknOMAc6+hvq6dg14Xw1RLpSVwbq7diAFYrnQWJwFgjCx5zpJWR9tZrbjq/d07Ld6IRQp3kbx2+4c01ndQozI8trcRIyEh1Z4nVWUjcMCQQR1FfKvhw9kHxxX1O9HPa2K/tYruHPdS94Uzzwkjx+0OhyhyvQ5HSvmv6SODfR7+9gxpEV5cKo/7MyMYiPIxlDjzrF2Y7SlFmivtcvP1AeE6r+6n/wAjZrEPfPKpB94W2Yf6xp7/AIRXi2ZrC3B+rHcTsP8AvGijjJ93dyge9qh/Uo7eWtlNerdTJbrNFbMjynShMLThk1ctRFwCB1Ct4VE+utx+0u721ubW6iugbU28gicNoMUryIWHMa/pDAf92fi2cG8XdrTh6ERa7vQ3X/B78IzNfTkfUit7dT/3jSSSKD/6qEkea1B/4Qji+u/tLfpDaNKffPKVI9+m2U/EVbnqG8I0cLklPO4vZnG37MaxwAeftxSH41zH62HFu+45eHOViaKBfLuoYw4/2pkPxqq8+Lk+X+E7Uytmaty9AfCe/wCLcPj6fTIpT5rBm4Ye4rCQfImtMdvL49fz+NXl6i3CO84v3hGRb2c8oOOTuY4F36EpLL8A1acTNqDfQimjon13uM9zwSdc6TPLb248TmVZXUeOYopAfLNbp6FOGi14TZI3s91YwvJ5MYxJN8nZqpj185DN+irAZzdXxO3THd2yn3n6W2P9E1b/AKw3FRbcHv3B0YspYUI2w0q9xFjz1yKB54ri28kVzb/gfxKl9A/pL4XYcNS4u7i2ivLqS5u5liAmuiZ55ZI1kWFWm/kjHjWAB5Cortp65kQytlZSSncCS6dYV8mEUXeOwPPDNGceB2rjqCMYpVRW1YWF7vUNbFudofTtxu/fukuGh17LDYJ3BOMsdMgLXXIHI73GB781NcqXYu7NI7HLO7FnY+LOxLE+ZNKW8xUgglSORBIPwI3rzNPhHK9ErfP72GZYZeN/lbh9RW20gHbfIwdIblnPM+Y6Uokx045j3nb3DP8ACkFrKm3JjGw5Mvs9OgxoXHI8j1I6nzryKTkDy2XyxrDHypEyHGOnhWL1KBs7A4bfm/7JyvegSmMukDn+UzDMsVrIW5mRX/VM/N1Dasl2zzNPwKUEKhKYxj6y5OcnLLhhkbZU5/h0rcqLbsnYp/l3t39/e3D32OnQbeQHOtJCDu9WN8c681i52qO3NnRwNFTg31NSXg3+MwLEWOtowS2zZGO8bYk6eZ9osfEmrY9L1mRb4UM+lSTjmBgAk+4VrXom4Y0k5uWHsqGWPPyz+fE1bf6KEyOjcmUqcZB38D0xSoeYfO0EcqdjePssjBJGj0YLfWwA3IkgADOeZbwAycA9Idhe1ErAJIdZIysg3DDnufHFabwn0UGGSQgK+sFGYgBym3sk6TkHC55ZwvhW3dhexLW2QGym5CtuVJ5hW/dJ3wRtk0yKa2uJlZ726ET6x15IthIy9QEbbfSefy+yuPDXa/ppvEFhcahkd0w+J2H21xvw7hMkrKsaFi7rGCxVE1sQFBlkKxJuRu7ADmSKst2UmtEWb6n3DJJON2jJGZFhM0kpAOmNDBNGHcjAHtuoGTuxAweVWF6ydyP0xdANq2txgAeyy28RCn2Rn6xJGo8znkALH9Xz0fHs9bXl3xCeFTMkI7qIltPdd8VjWRgplllaXSI0XGVGC+cjmiEySs0shZ3Y6pJGOxdubOxGCWbUSSd9/A1uw0d5PbYjBXdTMiQeMH2cgaSdyFIxtsP52fyadQ8JJYEgeZA0+PTP2eNJWeCVByw36sMEYxzHQDkPIbYrc7OyBUbbD90dfhv5Hy6VkxmKdI9DTpxmrjzsNY5bwAG2dvPAxvv7j099dM8CsO6t41xghATnP1m9tjg7g5P2VT3oz4DllHPUyjbfmRnr0HjV7cd5Y2AHyrzaqd7OdTlovqY8fU1jTXvZ8zFNYaxvzzg/nnSZak9VfV7nzZRFY1JIzy+B6Vi6kg55YO2BQsg5eI3Pn/ZSJ+fhQWR9CfRD2g/SPB7aUOJZ4Y1in3Bfvol0SagOTSLpmA2yHU9aWgu8DY8x865h9TLtv9F4kIpHxFeILc6iNImUlrZiT4sZIAP3pxXUHarh5ilZcYBJePPIgnOB/oHbHhpPUV47tXDOhVutmen7NrqrHKyLsrbXcB2+qg5HqTy2+e/upWbgMIMhAbEj62zJIct45LZAHRRgAbAUS3BUbAZJA35b9T8a0jt89ymJPpBVV9rKppiHPOoCTV4Y1awd/q1z4tWO1SpSqzUc1jduB8Bt4A/dQxx94dUjKo1OepkY5ZycklmJJJJJqI/RoR2CH2CodQD9U75Xy3Ax7/KtW9Gkwk7zXNLcKSd3klCEfuiLUE0nfnr8M4znZbm0WEAxqFjGFVU2VQP2Qo2ABz4bDypVWSsTUpOlNxcrm4dk4i0sYP7wP9H2v4Vy/wCubxcS8YkUHa3t7e38slTcHH/iAD5rjpXVHomvo5GmZXjeWLCGJWGtNShgzA5ID5ChsY2cc8gcP+mThl7HeTyX0L28s87yZbeI6iSqwzD9XIqrhBpJICgEAggel/8AN0stRylvbRcdf6/c8x2zUzK0TVAax10lmsGNewczzqQ6W5xWXe5pmTSqHFLc7lloLuK8pMTVeXq8ejKyuYZLviEriFXaOOGPvE1aQNcskkYL4ydCohU5ViScgVmxGIhRjnkaKUHUllRtvZH1l+H8Pso7W2s7xjFEwQy/R1EkpyzSTFJmK95KxdiqtjUcA4Aq1vU9V34WLmU6pr27vLyViManaZotWDyBWFdI5BdONsVzV6w3o1t7QpcWDyS2rj21cOxgbbu2EjKGaKUHYtkqwwWPeKBp/CvS1xOGJIYL6WGOMBURVjIVRn2RmMn5muJUw1OtDPSe7u77/dzoRrShLLNehcXAvT/HY8Y4000U08c10iIIe7yrWYa1YnvHQFZFRcEE/UGwya1/jHphsrvtBw3iASa3jiAt5zciIKv8usUwKSPhUNwS5bGlY1I61Quslmd21vIxdmP1mZiWdj72JPvoMo8adHCUrXvZ2tv0sQ68r2sfRv1gPRs3FrRbZbn6IO/jnZ+578OqLIBHp72LALOsmrUfqAY3qjP+Zi2MfpQcsf8AQD8/+m1QPAPSrxG2jEVvf3EUagBY9QkRQNgqCVX0KOiLhR4U+/8ALnxj/Oc39GL/AHVZoUa1LSE1b4fwxrnCe6O9/SVfCz4XdOm30ewm7vpukLLEPLLBRXzG4SMDx6eHIVuPaP0s8TuIngnv5ZYpBpeNljCsAQcErGGxkDkRWnQuAMZ+w03B0u6vma16las82xZvq/XlhFfx3F/N3UNv+ujBinnMs4P6kFYIpMLGczFm0+0sQGQWxb/rVesNa3Nj9E4dO0puGK3D91PDogXBaMd9HGSZmwp0hhoWUNjWueVe+Hj99Yal8vl/ZTalKnOam5bdVYrGbirWOtPVN9NVjZcM+j3tx3DxXExRe5uJcxSFZA2YYnA/WySrpzn2c4wQapD1jOP2t1xWe5s5e/hnjhct3csWJFjWJ10zRxvyiV84IJc78wK974fkH8K9Vk57A+45/wDpx9tEKNKNTOpfNEOcnGzQsaweBS3sKTlsIuMyHJwi4Xm52GB1OBXnfr4/Yfwp3wjirQyJNFJ3ckbB0cKCUcZwwDqy5U7gkbHBG4yNbqR5r1KQiz6Mei/hacK4PCk5EYtrVprg5yFc6ri4weuJHcDHPbHhXzg4vxVri4nuGGlp55rhhzw00jSsucDOC2M4FbJ2t9KXEbuJoLi+lmhYqWjcKFYowZdWiNSQHVWAO2Qp6VqUYAHMH5/h+dqwYal3cpSlJNvkaZSvojJzXUn+DuC99xEn63dWQHjp1XWv7Qn2VyyZRUx2R7X3FnIZbSd7aRkMbNHp3UsG0kMrKRlVOcZBBwdzm2JSqQcU0TDQ6a9bPjAt+0HB5px/i0SwyEnkpF03fScj/JL3Mu2/s+6r99NfYf8AStg1qlwLdZWhk70R/SFZUdZVAUSxghiqkNq5DrmvnT227dXl73f0u5e57rX3feKgK69OvBRFPtaEyDn6oqU7HelDiFsgigv7iCIckDCREHhGkoYIP5qaRzOKxPDtqNmrr03GXsdAL6lbf51H/u8/8dXv/Mtb/Oo/93n/AI6qSk9OfGOnEpz/AKsX+6rKL06cY68RnxzO0IbHlmIjrnkeVS41l+pffwJjrsXYPUvb/Oo/93n/AI6vR6mDf50H/u8/8dVH/wDlz4z/AJyn/oxf7qvf/Llxn/OU39GL/dUZa/tL7+BZXNM4nbKkssav3ixyyxhwAusI7IsmnLadekNpy2M4ycZpvKPA5G3TB3Hhv12502tIgv2Uvr8D5eHv5dK1GiL8uplEvjkDmfH4fMV5ImzbjbPvPuHX505sQCDnHQbnG2V5fb8h40WsYOrcYA5kDcZA3zyyD+cUyLKNXZ1t6yVuIOEcHtgciMW49/c2ndZOwyf1meQ51TfajtIEi7tWAYjpzAP41dHrJ/4zwjhd6gOkLESBg6BPAp9ojI9l4xHkE7t51yxeWTFjtnJP5zXl6yvN3OjhajjSsi4vRX6RCkBiFu8pXbEWjUwzn2Q7pk4HIHJ8DV09n7/KLIFkVWA2kRo3GfFGAII5fOuToez0w0sqTKcAkqpkHkyGPf4HfI86tfsz6ZyhSG4AICqrOch+QyXQgHOc+HuqINJjJ5rWaL7LVG8TuNq8hvhjb4eHzqM4hcYz+flmnznoJhDUgO2vDDcwtbg6O8IBbnhQdTEDPlp95pP0Y+icsDbsI2RZEJmCDV3KsrNHnxONA9+TnTR2d48r3JgHtzsq6IwMlh7TMFztkKms/uruds1v/pI7QjhHD3wwN5cBliUHJDYwXH/Z26tr8C7Ku3eCqUqfeNJDatTIrR3exTXredpY7m/SKMhxaRNE7LuO9dtUqDGx0BYwSDswkU7rVb2FpkBTn62MdM74DdCR0BG2/nUVwm31EDOACDvsDzz7XLc9T/Cth4fZHmfaJwT1578t/tzt51069qcMt9jVhKahEecH4YwIHicgHYbdRnbPPb7KsDs9ZkDB/pf3j31E8CtWO5yQCQAeh6gdcb7Vu/Zy0JO4xuMkff8AZ514vtTFuWh0lJRWhYPoy4cA6fzdTfIY8upzW98Vi+/85qI7B22GJ8EwPif7PvqdvevuNNwlJRw6XNs89iarlWufLN3pJjSazVmZBX1BO545xsB25nH2Vcvop9XjiF8FdkFlAd++uVIdhvvFbAiVuhBfulYEFWarY9D3Z+14LwleKXkAmurgo0SME7xVfLQQw95tGxiBuZG2YAFTnuwKq/0p+ni/vyyhzZ25yBBbMykjwmnGJJD0IHdoRsU6nFLE1JtqkrLbM/ojSqEY6z35FtPLwDghESQ/pO9TBdiqTyRsBzaWQCC3PTu4R3g1KWUg6qrr0hesde3TARpDaxKwbuwq3DnHR5pFBwRt+qWI4yM1T/DyAMbAcsD7Bt0FYyoAfZ3z8ap4WD1n5n11+Rfvmvy6e46L7B+lBLhirIY5EAZlzqBU7ak6kA7EEezkc8g1vXEJ0mTOoMpyCByG5+0dc45Vx5FxTRIrxuFmTJABznA9pGxthhkafwq1OCdpEukDDZsYdM9fMdR5+6vN4/BKlNuH5X8j0WBxueKzfmXzLgsr6BARqQDzYDlzx4nbzrR/Tb6SRGgigYCVyMY30j9uRh022UEbnfGAc61fExozRKAwUgYAX7sbZxtVMcThkIkkLEuSACc6iSd8eYAx4DfliqYPB95LM9Ut18ycbi8m272ZuvDeLTRSCaKWSKYZIlRir5O5yR9YMfrKcq3Igjarq7H+s1chAl7bQ3S7BnQ9y5XG5eMq8TsTvhREvktc8dnxJoHeHJ6eOPMjn7/vp1NPvpHtN4Dp5senxr1cqUKiTkv5+R5lTlF6M6Ia37L8TJXH6KuG2GP8TGonkv1+HuzEjbd2zt5a92m9Ua7XJtrq3uF5gTCS3fT0AKLMjHGN8oDz25VScfDBzfHjgcqfdnuO3EPtW9xPaIp1AQzSxr4/UVwjZ65GDnG9RGNan+Sbtylr/hLdOX5o+mg47W+iHiVoryT2cixx5LSoUmjC/vloWfSmNyzAaR9bTWlOa6u9CHpvuJLiG04g6SpOGgV2RFbvW3iSUqAjBxqgxp3Z48/tE1B6V/Rg9vxQ2UQIS5kT6I2CVEcz6cMfC3OtG3zpjVj9YU+jipOThVSTtdW2aE1KCspQ22Lm7MdjrCxsbd5raOZ5YozNJJCkzlpEDyD9YCVjX6ojXoBkFskzM3Z6G2trhIvYhYSyqmcrGzruIyTshYBwp+qWbHs4VV/TDCvdxwjOEVc45hfZRT8lJx99Rfbbi6SIY4/aTG55A4+qozvgEA9NwK8tVxUpOWZnfp4VKMGkaT2D7QBg1rPpeJlZV7wjTg7GIg81YE4HQ7dRivu13onWJmEd/ZAhZ51tp5XjuhEjYVVGmRZHO6LreMtpLcixWS4jb6TjHLffnjmM7+BG1Xr2U4wsc3DBLLLFNdNOogWXiDRO0YMkjLFHfR2UaBZUQ95buTIkv1iNQtha84q0SMVRi2mcm9u+xwtRlbyzvF+kTWwNpI7SAxYLNIjxKqAgrgiSRTnClwCax7K9g5LmJ7gzWllbrIIRPfTNDG82kMYYQkcsjsqkMcLhQeexAsD03dpRdcMt5IrhriEcSlj/AFq3xmEwtUdv1l/xC8fuu7kTEalQGLHqdWi9mrK74jFBZxpEIbH6VM1w5MMMKXLpJNLfXLuYkRe59jSqsVV8CQjbqRnJ07vnqYHFKViE7a9l5bOXuptBLRpNHJC4lgmhkyYp4JV2eJ8HDYG6sCAQRW/9jvQLcXQtylxboJ7e1uW7wTZRLmSZIwvdxukjqsJZlLxAFgudmYQHpc41buLO2tpTcpY2rWzXJTu0mdpnmJhQsz90msorPpJwSBggm9vRN23SzgtYG+kF/wBBvxQMgix3UK3dwITumoCZJ9COrexIoL7nCqtSairbloxV2c/+lb0cTcNeNJpIZe970oYDMdoygOsSwx4J1qQFL9d+WX3A/RDcTQRzrcWSCSAXKxSzTJMITcC07xv8XMIHfELjvCcEe6tg9ZXtZ9NTh1wO8CSw3kiCUjUALgQMCAzKDrt2OFJGkp1JAsv0S3qx2djdPGot7fh0AmuwZWKGLj8E0luyrIYsrGjTaRF3p/exhapKpJQT4llFXKJ4/wCjKWJLRhcWlw15dyWcaW8wkVZFMCgtIBgrqnVX9kd2dOc6xjc+H+rrO2zzSIdgAtjNKCeThWWQBgrhkDjIcAMOeBiZQx4KykMrdpOJMrDOGU3nCiGGQDgjB5Vc/GLOOTi9jcLaRTCEpG9/9PSMW7RXNyJYmtC4LNH7QJI2L8jpxS51JK3x/csoo5yt/RNK/EW4fHPGxC2zCdoboRMLmK3liBWCGdoyRcD2pSkf6tyXXYU6T0MTsJGjuLcpHJPEv0hLu0lmaC1S9n7mCS2ZtKxOQGkZNZRiBjBNxeibI7R3OSVUcN4NncquspwFEDbgFiryoAeYZwOZqe4jbM7ysmXSKS8ldg2oIk/ZezVJGJJISWcyKG5M+vqDVe+kTlRy/wAO7DF7e1uGurW3S5F4Qbp3iVPoskETLqRJWkeQzhlREyFR+eKh+PcMhjMYivIbwtkOYY7mKKI5ULmS6hhZw2WOpY8KE65FWRc9trm24NwgQtEoZ+LKddpZz7RzW2kA3FvJg/rGJIwWyuonSuGvpP4vNPbcKuFWKUSh0aEWtogN/bTd3Ij/AEeCItHcRyQOLdiVw77eD1OV9drtFbIkIfQG5naM31sY/o0d2k8WmRWikMaxSOjSoIklMmI2Lt3mk4A5DWx6L3/Sh4Z9JgjcNbqJpyIVfv1tmURR637yXFyumFXzIEYgjlV8elCPK3KrBb31uLP6D9Etrd7a4d+G3ljDNAt1ASQsMmLqOLu/5NnjVfZL0w7D8cePjfFiioGHCLR1BF0wRoYeFRKgEEU07aRM6l1gkbUgZdILZQq0rFsqK1b0ESpBNNNcxRGNbuSNVikmWeO2tUvHlSYFVVWR+7GVPtqcFtqz7H+gh7i1t7n6SyC4jaQIllPcaQJJI9LSRuF1ZjJxgbEVe/bIEQ2zuzkSxcWln76SeRcNwQagxu1SYQ6lQhJ0Qg6dSq2w0v0AzO1vweGSwhu4Lg3sbTyW7XD2yxTS51SSpIiLJIWKxjQoOrAJJNW72eW9/vULIqL0g+ig2qRut0sxe+WwZJIJLQxStDHOpkMrN7HdyxsWxsGz0Iqev/V9mhBe5vLeCJLJrySRVedk0PGkkQhQh30d4pMo23A0jIqb9OfH1kSwijh7hRxGOXQvDJ+HRlyFTV+twkjkYGB7WAN8Cui/SVxD2ZmjkmDC04mytYgS3QDS2Gh7dNaamYI+n2gDpbfY1V1ZJJlrHF/EfR3ovpLL6ZaKyC1Mctx38Czm5hhmjWJI4Z3DATqCHxyznfAuXsF6LLaGGVbgWk88IuXn7wrMR3EpikWFHXUFBAAOlSxOTgkCnvYgMO0t0WKLCLDhwn+lZ0lzacKFmHH+VF93BBO4/WeJIc2/GV0FRIZJbbhHFRcBgQ3f/S7J3aTACapJO8OV21a8cqidWVty0Y3NE7VegQmUSQT28Fu+JJFldi9sjT/Rg+gZaRGmDaRlcDA1c9NfduPRtPZxpNI0MkckzQK0EveHvFj73Sw0jGUwc78xXTfaPisi2X0iCNg6QcOlWTL4Yrx4N3BGy+wA+sDLMJMEYAzrnp/4L9K4di3/AFgiu5LqJV3LRfRbd+7AGWLxQT6Sn1i8ZHUZvSxDckmTZo5YCfAfP89T7h1rJY9jnOc45cvtpCKTwPyP4U+4TZPK6xorSSSOkaIp9pnY6VUZxzJG5wBvkgV0C6MVIwcczpGOeMHJ94JAqU7Idn7i5k7u2gkuHOxWJS4AJ2aUj2Y1z+25VdjvXRvAvQrwiwSNuLXSvOyl+6ErxRewCzCKOLFxKB9TWxAc6QEUtpLjtB6xUNtH9H4TZxwRrnEksYjj3+syW0ZBJbc95K4bO7Id6yVcfCGxaCb2RYHo77ATQcCmsuKS28KHvWjfvBpt0YrLH3ruFj1Q3OqQaWZcaQDtXN/ZGwjkk7uTDDONSNlccsqw5g8weo8K1vtn2surtu8uZ5LhxkqJGwin/s41Aijz/MVc9aj+znFmQggnAJ5jDgjmMciM+e3TlXGq1e8ldmygsm/E6J7O+jUK2qO4kKA40EqR7s4pTtv6OYZtDMCHj3Gkj2xkEo+Qcg45DHM451X/AGP9IZi7xyx7sFdX1ti3IAc2ycnbOOuM7p9qvT6i6gkUjnGQciNfgxJYfBKlRTWxeVa27Vi74pVwMdANhyFar2p48o5sAo+ZPkOZ9wqWjP0R+8vYWntGCkXUHeaYQQN7iBSXaLmTKpOBzTc4rL028Ujl4nMsOnu4ILa3XuwvdHKG4LJp253GCeuOuKispQjdhTnFysi4PRJ214MjI7Ri2utOGuJ4wxYsoD6bhdQRMDSA/dgDbfJJaekz0JS30sl5b36XfeZKJIRpRQSVihniLoI1yAqd2vUsxLs1c9TPjHM8+W/h06/D+6V7Pccmt37yCV4X6mNsZ8nX6rj+awI8qpQx06YPDtSzRevXUX432FubZmE8DRaSBqYHu2J5aJPqOCd8IxI6ipLgljgezjOP2jp5D2hz6kkDnnT05VZPZX1gHZe6vbZLtSMaowgZvASQyfqWyeZBQD901uKdmrDiETT2GI5Izh4lHdjVjOhoj7KMRnS6YRjn63Nb4jEyqweV68uP9mqlilBrvI26rb+iuuBwn4AYA6Zxz8ts+H31unArQgjbwONj5004Tw7kMYGR4Z8wTg9fCty4Xa4HLHIe4fLn414pydad+Brr1EbZ2N5Nzzhc8sbluWN+lSfFF9k53G+w8CN/7/dUb2UOFcnxQeHjgVJXzqcgnGx+0H+35V6ajbuFfr+7ODUv3rPk+hrf/V87JLfcUtLdxqjMhllB5GOFWlZG/myaBEf9PpzrQq6k9Q/gCx/TuKTEJFbwtArk4UYUT3TnP7kawgHP7b173ET7uk2t/wCTz9JZpoZeuF20M/Evowz3NkoTSOTTSRrJK/gdKNHEM/VKS42c1T1xCuMhSR4r0+Bo7S8da4uZrlgQ008k5UnOnW5cR56hFIjHkop4gHTrvV6NJQgohUd5XIVlXoT8R/EZ+6kpuRGNWdtiAftIqbktlPMD7vupF+Hr5j8+dWcGVua1YcMC7+2CMEEjGPMY2z86lrO+eJg6Y/nDB38Ttn7vwpSe00/t4+f3DP3VGzqRktI+PeB9wrNOjFRcbDY1HmvcsNO2iyR+yuXIIIbZR0LNjnv0U7+IrV5ZwTspkbxPI/wx8MCm9h2gkKdyjKIye8ZdCFiygYJkK69guAAwG7fvEmRtUPIDSNiWONR9wGQPjml4PDU6aeRfEvicROo/N6CLWzt9Y4/mpkD/AFn5/BcU+tLcKMD7BgfnzOTS1FbjHcwljzseX3++mcz6nx+ygLHwyBkD57Y99PZ2wNtz956D51F8UbuoXPNiB8WLDA+dQ3YmI14leEhcEqQc5BIYEcmUjcEEZB5g1016X+NSzcK4TxhFDz281tK5AOGLju7iLIGyyXMccZX+cRzxXKirgAc8ADPnjc/E5Pxrrb1MO38SWN3b3DqqWRN4rPjSsDkyPjqTHOjyE4yDNGB5ZcVeMVUtez26PRo1UlvE3H0i2LERSiOQBxjeNwd11oGBGQcasg4O2OlVw1m6hmKuEztlGx8DjqeQqAX1oZZ5it1BGtq0pKdyH76FD7K96CzLNhd2CBG3fSG9lK3tgb2eKG3dXjcBldN0CkZaQkbEKueWN/Z5nfy2KpTpz1W56DCVISpb7Go9mey8l3OWWKUxxlWf9W7ZP7KbAgasHI6KD4iqs9NfaLv70dwzAWymMSxllYuWJlKupBABOgYxkiQ5IbNdC+sT6SYeF2/6MssieSM99KD7UKSDDOXA/wCkyruoGO7Qq3sjug3HzEpspwMAggYyOnw25cq7/ZmCajnn8Dh4/F3lliNLnUAEJbSpJVMnSpbGSE+qpYKuSBk4XwFbn2S9LN7a2wtIvo7QCRpe7mtYZwXY6izGRTqIOME8gAByFafcSZOTzpEmulPCxlozDGvJbEt217VTXjq8qwqUTQPo9vFbrjJb2liVQxyfrHfFRH0uTOdcme77oHW+RHpK90DnaPSSvd/VwSMYNeUA1HhIpWRPiJGDyMQqksVXVpUliq6jltCnZdR9o4AydzSBg3zp38cb/OnVZK9VeEXMusTzEu/f2Bqf2CWjGpsRkkMWjGfYJYBiVwSQDzFIzRFiWYFmJJLMCzEnclmOSSTuSdzT4NXtV8IuY1VhBrmTWJNchkBDCQs5lDAAKwkzrBAAAOcjA8Kam2yfq5P+jk5+XPNSOKzU1KwceZKqMZsXKhcuVBLBSW0KWxqZV+qCwVckDJ0jPIULO4AAaRVV+8VQzhVkwo7xQDgSYVRrHtYC77CpTvN+fxzz8sgZoHTkep5Hb3k5+VHhFzLKbG1jxq4TOie4jyzMdE0yambBdm0sMs2lSzHc6VznArxeJz953vez96ecveyd8fZCby6u8+qAvPkAOQpysunGOoG+3Ichy6b5HWlWUHkB8MY6YGx55oWDjzDvGMeI380uBLLNNhtQEskkuGwBqAdmw2ABnngAUtaccuYxpjnuYlHJI5po1GSW2VWCjLMzbDmzHqaUkcb7YPkMeOx3pvI/Pz8d/lUSwsUMjK55xXic8oAllnmAyVE0ssqg4wSokZgDg4yOh86bwX0qsrrJKrouhHWR1dFwQEjcEMi4LDQpAwTtuadIgwDnffYbbcsg5675GBsKwPLlkEZ5j3ZwBz2rO6KGos31dbsy3UySa57iZI2jL6ppXMOsuAW1OzKhVh1CxHGy7T152dnimaKSOVTqGoCJ01AsHUhAuCrMFfTjGQOoqmOCcVkt5Yp4XMcsTrLG4OSrLuMjkVI9lkOzKWU5BIrt/sF2xte0NucAWnEIFGVJBPQiSMj2pLZmJG41RMdxurPzMfQlbNE14ecYy82zKzNjMiquiXmo3STTqBBDFcadQKhgTuCB4Vunoz4A+okQyewoUHu3JAcjVg6dtXdJnx0L+6MeXl5PbSdzdoRt9b62RnZ1cbOv/wAQ2zgjFbLPxt7e3uHjlMUnc60k0LIDJHqaGORCMNHIWMLadLYfKshAYcKlXkqiUjsV8PGVFuHvOFu01q6TyrJFJbv3rsYZUaOSMMxZFZGAIwpGOhG4yKtz1NOAd9xPvCpYW1vJKNs4kcrChx/oPKc9CBVywy23aixkjdYrbilqDhlyQp/ZdSf1jWkx9h4zqMbfvFY3dp6AuBPwPhPEOIXaGGdyyLE/1h9HaSGCPwJmuXchlyrRmJwSN69G8TGVJvicKz2OfvTH2ka54pdSHOFneBAc+ykDGJAPAHQXwP2pGPMkmCU1FWUhZiWOpj7TMeZYnJYnxJJJqUEg25Zx+fsxXDk7s3Q0R5cSY0+BbB+IOPtxSlNuK/UPlhvkQf4U4VsjPiM1UvxJO7vQLYL1Mjgj/VQg/dv+FV5dzaj5ch7v7edT3GZeY8EyPiWBP2CtcrdB3ijDW/NY6/8AU/7YmTh88Ujl2s3CrqOSIJELwrknJCPHOi+CiNRgKKo3s7xBpnuJW5yzyOTy/aIUAeQ2+Aph6He2r2n0tEUMbmBYt8+yVLAPt+6sjnenPo+/kc+LufPnScXPyJGjBrW5OKDnfGOYx/HPhS1Yg7/DHz3/AA+dZRMCcZ6491c46Q4tNtTeCnHvOw/Purf/AFQOOlOJmPPs3EMikdC0Y71D71VXA8maq/mOEK9S+/U4UbdB1Y/IUz7J8da1vIbhckwzI+kbakGA6D/SQsmfOinK0r9SlaN45eh11xaMRXEoAGNeQu37WHyPADVgDyp8smT4jx8fdsPltT/tbGkgiuUwySohDDO4ZdUbY5HUrdRtgeNR9vHy6jPPH2bb+dcWvRlSrTjwvde56k05KdNPpb0JW3k0oee7p06e0DkcyD4fZXt7FqOD+0uSdzjGQCDgHBHTpt515FspIySGjOB1ALagNjvpPgc8ts5D+WPGgjkNW/Pmdt+oJya1R80bPp+/+mZ6P75HyyVq7E9IMZ4Z2XtLPdZ7zR3oGNY73N3dBscwo02pO+zKOW9cpdiuDCe6toDynure3PTaWVIzv7m5101693FM3lpCP+otWl8v8YkK4x5C0X4GvpdZZqkIPq/Tb5nm6ekW/gc5U+4ZfjQM8xqX+ixUH4gA0xpD6U26IBz1MzDIXIGwzzOADjzp0pZdSlrk79PHQMflj55pEXhY6QyqfAHU32cvsplb8GVhlzJIfPIH+qBTm0tguVjXT4nw97cyfyKE5vf7+/eV0FXiVeftt4f2fjmmvEYScFhjHLwH5zmpS1tgvmfH8PCseJfVPw++rON1qRccWlkgAIUDkdtt6c6etYRNsPcCd/cOXXn08DWcbZGaFbgUdz2iiipKhUV2nHsL4d4CfgGI+3B+FStab2y4mcBSMAk5A5nHMZ6ZyAT4ZpdWajFtjKavITsTkZ/eJb4Ekr9mKUedhqUFlDDS6gkBgGVgrgHDAOivpOQGRTzUEe20mwbG2AcfcP4Uze6zlvP4nxJ8yTmlVJWilfgO3YpVt+qje3v6TghtJGRGbXcgqJIhbIyvPqDA93rOmMOhVu8ePeqq4XZtLLHDGNcs0iRRoObO7BUGegyd25AZNdecVubfstw/uoilzxO6GS5AG41ASuudS2sHtLHHnMjluWqVkx1Xm/5xV2/u4yGnmeiKt9dC4ifi0ndaSyW9tDPgb99+scHONz3LwIT0046HFJXb7gc8AD5c/tzT24v5JWlZ2LySEyM5wHd2fVIzMAMliSTnxNRkgwfz94rs0qfdwUeSOdOWaTZ41JkVnisRIfl/b+NWuQAQ1hShmNJ1AGQShU/J9+KA3Xx/O1CN+c4oIAJvtXqtRG3juKFqSb2FFYe788q9JpMivM0ZRsKvMWjGSPDrjw6msplAOPn5H39ff50ir/D3UKfjUammM0KgUpGtJI1LpUpakswlFJOaVuGpBqXU3LwdjzNJuayJrFqzyQ5MLWcqysMZVgwyARlTkZByCPI7GnXDOKSRSrNFI0MyOXSSI6HRjnJQrgAEEqVHslSVIwSKYmslpOVXuOUnax372a4uvEOAQXV66tJ3bs9xDHjunSZ4WldB9VVCAz6cJgSsAqgaa07YdsreCzZBcQ3kzIUjS2bvYkzsHllHs+z0XY7Ywcal0z1RvSaLKf6LM4+i3R/WLIRpgmPsxyqM47uVdMcoI2/VvsqOS69Yb0cmwusIpNrOS8JxkJjGu31fvR51Jn60Z6lHNeextHu6mbL7jbhqrtkvp96fyVf2Y7QTWdxHd2zaZomzg50yKT+sikUc0kGzDnyYEMqkWT6zPpsXiaWsFuHjgCC4nV8qxnIZe4PRlgGr2t1dnBH1ATV93BpPX49fiPupkbYZz49MdfHyP31kjN2sNnSTdxnaw6c9aQvG/WR/6R//AB/up8RUZxT68fv/AIrVUVehNuuQR4gj5004O/sAHmuVPw5fZindMrVsSuPEK4+QB/PlUDHuN+O8/fGw+X99a+a3riFp7K9CVlTPhrAB+WOm/gRzrSyGGY8b6gMYBORkDB5436HBzmtNGd42MmIg1IkezMf8o55JGw+LbD5DUflW4ej4/qB/pN99a1JD3cLDy38y2B9nL4VMej1/1bDw2+efxFIrvMmzTh1laXQlr0ylvZzoKqdsA6iXzk89l0V5Z2DlgcBcZ3JGd9umWOPD7uk21Zwtj8+74UjvWlZI090m7tjTV7TgbgORn3AZ+3NIXFoCc/k/nyrHhiEa9QwTNIce9sj7N6esPOkjNy/PVL7drLE3C5zuod7cn9pMl5Isn9qI5kUfu6hsI97US3KsyHmrY64x0P8ArDSfLOK5S9DlykXE7ORmCD6QEJbAX9YrRb+/XjPQkHkK7B4/b4nO/wBcKTzxt7IG3jp+6l4uGemp8U7fB/2Z4rLUceDV/j/hlwmPdh+8uce4j453P2UveR4CjwP5+e9e8KX2lPvHzH8NqX4ymCPf/Z+fdVYw/wCTf3bcVJ/9LHzt9XRF/THD9e4+lp0z7QDGM48pAhz0xnpVj+ugGHF317BrS2MZ/mDvBn/arKKkvUE7Oo91dXb4JtYI44xsSrT95rkC7sCI4GjB2yJZBvviovS32zfiF091I5bWSI0JysUIJMUSjJAwpy2Obl25sa+g1Z3xDa/Skn8dTzsFamr8TXTMPEfOvO8Cb5wSc+ecAdPdUVxFduXI1M8CAKLq57756AkfPaphWzzyP3oJKyuPIOJnwz7wVP5+FO4L1f8AR+77KamNPH4Z/Cml2WOyKB58zWm7QrcnkcHkc+6kr5Mqd8bZ/sqFjtSu5Y58z/AD+NKTcR0rht87Dxoz6ahbkT1zOEA+QHWmnD+Ijk23n0+NSV/wEvH3uuNQH7vQX/WscKdSxnmo1DJByPDAJGsPCQcYOfdQmmCjoTl/fBRtgk8vD3nFY2l0zKTp3GPHB8ce730w4eWU/UJB5jSfmNqkZuJKPEnw/E1JVozu7vQuTz32H55Dqar3tVc6pPcqg9faIDN94X/VrbeKTh43PJwjbdMY3A+HPr8Ktr09eiAJY8N4nCnsLZWUV4oHILGggu223yNEMh6AQnH1yOfjamqhzH0Fq/cUhbRjTvnIwMAA9OePh41HTRadRG46fE9Qakbib2tS7daacUuRg+7AHgPzvU1WsrJje5dfqK9jXuOJi6ORFYozk4yGlmSSKKMZ8EaSUkbgon71ar6wnawXvE7qdGLxd4IYiTle7hURBk3I0SOrzD/vScAk1dvoJuGh7JX8kYNvJ/jx73cNI2hF1oc/WAP0ZWHJovEGuUaOzaVpSm99gxUtEjImlZVUY+scgE4IA3HTY0iKXuZNlGBug3wCeo5112YBEKegP3/dSWP7aWjlAHX+lgfIDP21laEFt+RB/HmfdVSRsa8NPV0nTyGdsDpvjUT7sbdedJWqnBIGTkDlnA55x58s+/xqCDJMsGJIxyAJAGdtwCeg+/HjTWspF335/nb+ysakD0UotJis1NSVM6xUVkK9Y/DripJHEtgBsXXPh+TSEkIGcODjpjn7t6X4x9c+4UyQ70F1cyR6eRV7JbZ6qpAGxJA5D97fx/vzTu3sxjZlO2Dhs77bj7TVoq42NR8SMn/IpEmlr7Y8sbch0+2kZhgke78furPUWo5TuYMaxzXprw0mwxSPDWazbrsPZxyGCd9XtHqd8Z8APCkjXoU88HHjjb51VxGKYpczlue/QDwGScDyyTXZfoQ4z+meDz2E7K93aKgieQ5c+xm0nZj7WVdXgdhklAC2TKc8b2EqqcsCT0x9pO/yrZvR128ewu47q3X20J1qXOJY2x3sLcxhwNic6WCNjKCs+Jw6q03H0++oyM2pJknxSJ1Zo5UMckbsjow9pWU6WQ74yGBG223UVG11b6TvRfFxsR8S4bPAGljVZVk1KrsoGnvGjDtFPGv6p0ZGJCxg6dHtaz2a9VyfVrvbqCCFfaf6OzSOVA9r9ZNHHHF46ysgx08PLOjKLtY6yrxau2UB2e7OT3MohtoZbmVtykS50g7apGOEiQn9uRlXPWra9LfoZPDuBmaYq1297atIUYtHFGDMiRISoyT3oZ2xgthRlUVm2nt16f7Xh8YseCRQyBFIa5bLQhupjBIa6kO7NOz6M6T+tGoD30i8amuexwnuZDNM9wC0jBVLY4o6IcIFUDuwoAUABcYrW8HKEM8vcZpVm3psc1WTeyOu39/20zaXTcIc4B0j4HK75896x4BMSCDyHX5bD7/lXvaC3yob937j/bisJqvpc2jjS+yPf/A/hUPb2IYNLjcP3QH7RA2JHTO+OewHTO7q3vDJCG6ggH3gYJ+Z+2s+ywy7RZA1MzAk6cAiLUSRk4XJOwJxqqkbqLGStKSITtC36s+ZH35/hT30bfteefiRpP2UtxvhrKXicaWUsjKeasNiPDY176OBs3TGr7xzq0n5GRFedG41lEPfzHKsBWIlGcZ32+3l91ZTWbzx/sYF4ZBeqN3u5YWwcgx4YRsRy9mSJ01DmHUHOBjRpFq/YrZp+zChRlopnY+5byTU3wjfUfIGqR4pblQN+eQccsjJ2+fM/ZV6qUbe5FKEnLN0bIWY4kibosqMfEAOpyPdj7q+gHaFMum2difPbz8Bn7a4DjUtLDFyEs0UZI5+1IqnHz519BeMKcjYEYOcjPw32HLnzqct6Ul1X7meu7VV8f2GYUrgnH7wxyPI8vPxp9xCLIz7qSMIO2+emeg8OX2dNqfxrsP76tTp3TjwMk56pnH/APg7Zx33EU6tDaNjphXuQf8A6x8zXOdzaCIlPZLRs8baiQMoSpxyBGQa6B/wd1tm7vpP3baBMYOPbkc5zyGO65dcnwNc/dvAXu7k405ubl8dN5pPDbn4edeulK1adun7HIt5IkbxK5GPeAPkAM1OPwgRJBhixlto7lsjSEMpcqg3OQIxG2o4yWbbGK1W7XqOQAGTsPh4++rd9KfZpoIOFSkFRc8ItjhgQe8iGl9j07qS3I9/mKpSnmra8mTKPkNAlnA6/AbmlobskdRy5jFYqvwr2t6uZxbvE6nHvNJNjmCD7jmsHQHmAffTHis+hcKMFjgY+048eQ+NROeVXZKjfRG8LTe5vlXrk+A/j0FQX05gPrNsB4/ZWcaaxqQ6v3hyYHrkVfMLyjp7p32Gw8v4nn8q9hsR1OfL87/dTQow29oeW9YmE9QQPEg4qUybD+7s9srhSM+6u3O0fpLh4fw3hr3URkhuobeCVVUNoVrXWzGI5WRFxpaPmVY6dRGluIn1KDn2l8c9OtdDxT/pLsh3kv8AK2OdEhGSfoj6FPPOp7RjExJ3clschWLGRhKpTUtm7P42H0LpSaG/bz1b4btPpnBLiKSKTLC3eTMWf2lgnGpoyDkGCUey2RqQAKNX9FfqqXkk3ecSK2NvGS7BJYpZ5NOCArIZIY4+ZMjksAuNHtalqDst2muLRzJbTy2zkDJhcqHx9USp9SRRk4DqwB5CpntV6VeIXa93c308sRyGRdESMCCMOkKRrIN/quGFTU7OqN2zadd/7BYiCV7alnesp6WraS2j4Vwzazi0CWRc6Je7IMcMbP7boHHevMf5RwpDMCxbnkUGvM10KNJUo5UZak3N3Z7WX0huWo495pM14TTWLA1jXpryqgFeg15RUohhRRRUkHorNKwrJaAYrGf4ef2US1iK9epIJC9udJHsjcDc7n5VHXE5Y5OOWNhin/ErQnBHPAGPnv8ADl8aZy2hHPHInmBjcjffrzoLoyiQEDL4xnAxnGTk/Pn1p6qIB+2cjbkBUcjbAY6/35/PjTuFhj8/MfLNWiy6Gd0N6dzoMK53wi7eJ8z4ZP55FC6G/l+cV5c3HsKOvX4ZA+/Pwqkge57NDqClRjOQQOQI6+Q2P2VjPEuk6TkqQD4b+Hln+NYC7wmkbc8n3npSUcoCsOpx9hpLiXjJmVpFk+W5PuHOnVnxHDgkZUFfY2+qDuBnIBI8QaaWEoBOeRBX5/n7aUe1A31rjy3PyzS3HQfGprcRkcb4GMnbIBIxnGGxkc9wOeB4UlWUzDoMDz5nzPnWFQlYu53JDgvF5oGLwzTQMcAtBLJCxxy1NGyk4z186dca7TXNwNM91c3K5zpuLiaZc9DpldhnzqGFZA1Dir3GRkOYZQuSRn2WHuyOfwrq30+r9E7K8OtG2km+hKR1BCNdSk9cK6hNurLXLXZ607yaGMgESzxQkHwkdUPu+tzrpD/CHX/+MWEI5Jbzy6RtjW8aA/KIj4Vyu1JNRSNdKzZz3w+204GcnBPuHTA6E/8A4mnV2RpOeWD+FIcJJK6jzb5ADYADw6/GseOS4Q+e34/ZXnjo7Ia9l5T7S9MBvjkA/MfdUzw2TE8eCVJyBg4OcrgKf3jyHUnAG5FQvBBpVmzkYGcDcYJyD8NJ+PlT3gcp1iXOGjZJU5HDo4ZCAdiupQPPDCpZEXsbsiQyLi5M0UwRUW4hRLhJAgwvfxPNE4ZYwsQkjbJCpqQsCzseDKi50kn2yuplCMcqp3VWcDdGH1jnntnAc27asNj2cbb/AHjy5dOVe3sA09FOtGJxttlckDw1Z+dZ3LgalG2o9qA7QR4YMCcnzO2Mbj59KluHzllzyP2e+i+slcb8+hHMcvny61VFpK6LV9WfjjPY8Xsi27Wc13CuTnJieKYjwAb6MdurE9a0DicxIGRuWbBznA9nl8evhyqS9XVHTisEWfZniu7c+BDW0rgf044/lVoHsTZWohgu4ri5nlhjlbRIYkjL5Xu1RZFOV0HOstnntnSHSjnSemnMVTlkk1xdnYozgDf49Z7bC8tPj/jEWfur6HTiuKu2HYXuLy0liEhgN/aRjvACQzTxaUDqME7gBT7XXrXad0d8U6grRd+hkxjvJDQ4/Pv946UvbNz+BHu/O9MpAM9B0x9uefKs7e5xjf30qE1GWoqUbo5c9Re4LcN4pDbuiXutnjZuhe3CWztscokyOTscZ865e4gjh3EgYSK7rIH+ssgYiRW/nB9QPnmrH9Sjijx8btlXlPHdQOPFBA8/iOUlvGfcD1xTf1nbBYuNcQRBgd/HLgfvTW8E8h95kldj5k16prLWkuav9DlNXgny0Kzu4dSkeIIH8K7Q9Yu0hu+z1peISO5SyliJwDpmEUEkb+H1wxAP14l3xnPGhNdy+q88c/Z6OO5jSeNZLqHu5lWRHUXEjRqVYEeyWCj93QDtilV3kcanJlqSzJxOFIu0CE8mHmQMfYc/ZUl9OQLqzqGQNvE8hgb5OORx1qxPSF6r93ES1m63cfMIzLFcAeHtERPgdQyk/u1DcA4bNZcG4mZUkt5p7mytAsilGCxsZWKhhyYFhqG3hSodoTW9mMeGRpk9zK31UCjpnGfl0+OaaXlkRvLJ7gN/gOn2VHw9opAMeyfPGCfiPwpjc3zMcn+73UypioNcW+u3yKxpSXI2OzvQ2NTAHVyG3gMZ8zv8aWhvUzkExsOf7OfI52rU0nNbZb9q4kTe3hnlxubi3ZgpH7KMLwAjzaLPP3VEcbZff8g6GpsFrxZf2mVT45AB/CsL/iqj/rYwMftHf4eNTXrTlLe8WG1jitreS0trgRwwxRnMinVqlVBM2SvJnNUrzPiT8Sf4mrvtN20iUeFSe5cnYvstc8ROi1Q3B1aDpBESH2ctLIQFRQGB1HOeS5Oxvn0wGDgnAk4OkplurhQ8hGNlaVXuJmG2iNyrW8QPtEb+1ociU9QLsfcWtrdSzxvEbiSNooZFKSMkasO9KtgqHZyozg4XV9VlJ5I7QcRmlmkkuGd53du+MhJfWDpZTknGgroC8lChRgACmYVvFTUpW8vz+7Fai7qNlxE3GfxOf7aSuTsOfLH1cDbljx25ms9W3zz/AG+Yps9dxswikc4GNsjb575Ph1+wVi82fADy38zWGo0NJ7vkKqAoZADsP3f7RnzP8a8a48h08enLrjb7etA+HLwHXltzrCQ79PkKhkGTkbYxy35k/diklXNe6vIfb+NLo2B9x8OvLyIHzPxggbUUGipQHprysq8NSVAVktY1kKCDMUSVkor1o/MeNCBCfeHxPzNeK3j8+Z/PxpUKPsPh88c6TYVIxGSPvv7vsx4+FOLZt9sdPHyO+c+fjypnn89fh+fCs4zQSmOLnH2H7v4b0zuF/I+FPEj1UxmXBxVZEs9A3G3l8Ov38/dSTnP5869LV4TS2SmYGvK9aioLoxr3NFAqti1zIV7WFZaqixdSNp9EUOriXD1554jYjlnb6TFk48AMk+QNW16/9znisK52Th0O3gWnuifmNPyrR/VctO841w9fCd5P9nBNKOXmmamfXWv9fG7gD/qobWH49ys23+2+ea4faz1S6fU6GFK/4WmEX3Z+fT7/AHVGdo5dwPAHPxx/CpXh8oKgj3b+VQ9wNUu2/tY8ttz+FcNHSlsOHgICoMjqxztuATt15j40tAMMwHLCfZkfw++nDHz60k4AOeW2P4j+NBa1ia4Be6W0n6rY35YOOfuJ2+XnU5xOQYAJ5tp5+Ox+Wc/CtLdh1pWSctuTn7D8v7qXKF3cbGdlY3HhkZC4O/h7qdVEWt8RnIJyiuMeYGR5Y93IEmnnDLvWM4xv8/s+FJsOTNy9D9zp4nYH/wD6gv8ATR4xj3l8fGrS4veG6v5Zl+qsmhDnI0R4QMOntAasDq/vNUp2dJE0bqdLRyJIGHMFCCp9+rAHmatKO/a2ijBVl1+2DjYrqKkjIxsdQ2G5HSiU/Jl63GUqd55ulvqXZ2F4dHKn6wau5uUuVHMa1RlRiMZOk5cY31Kp6YOzrxNX3B58vd0/urSvQfxYSFx4op8jpOM/HXy99NeMcV7vIXIKOU8SpU+zk8hkg8xvg0VsS6VKL4a3MksN3laS46W+Jud1fgHyA9oZ0sPLPn4DmCfCsIuJoxOnIG2Mj4nrtn57YrRG4q0jgndiTvlcYAXbmFBG5xz3HPapuwBB5jYE4DZHvG/LO/LB6VzFjZTk8q0vyHSwqgtdziP1TLOR+N2PdHSVkkkdsZAiWGXvQfAOhMWT+1IvlXVvpX9Fdje37zSwktoiWVklljEjKuBq7t19ruyiZG+I1HSuHvQ/6VLjhdybmCOCSQwvBi4WRkCu0blgI5Y21fqwMliMFtuRFg/867iOpm7ixy7lz+quOZ6D/GuQ6V7PG13UlenppbkcLDRjH851HH6M7FEKx2kEZxswjVmyPqks4Zmwf3s1sXA75PodqqxxQYjLSR28YhhEuto3ZI1GFDSrKcfztyedcd/87DiP+Qsf9lcf8VUVw71k79FCiO0IBY7xzftSNMRtcDbW5xWOCnrdmmpOm7ZTuJD5Z/POvIuFRyEh1DhkIZXVXTbZcqwI6538BXGP/Os4j/kLH/ZXH/FUD1ruI/5Gy/2Vx/xVWsUzo6c7aeg3hMysWs4o3wcNb5gOrHPTEVXwOCMfOqA4z6p9yZAIJ4u7aNWHfag+rA7xfZUjSCdiTnBweWTBv61/ETzhsj1/krj/AIqlovW24kCD3FjspX+SuMYON/8ApXPYVbUhuLHtp6qF/wB4FM8CLnOrLlwAM6lRdic7Y1jxztit24Z6n0XOW+lkzjPdQpEdxuSZHlzvv+c1oLet7xLIP0fh+3/Y3P8AxdeH1vOJYx3Fhyx/JXOfD/0uo1I8h0fxf0HcPunilulad4oIrfaV44yseQpZUKtkkk/W8PjuHZb0f2Fpvb2lvARtrWNe8/2rZk/+KuOYfWy4iP8AqLHcYIMVxj//AFV63ra8SxjubHH/AHVx/wAVUWZbPE7o4VORcDPIgr8CMj/4gK4N9ZngX0fjF8gGFef6Sv8A7QizuR5CWSRcdNPhipBPW+4mDnubHmGx3Vxjb/2rODjeq39K/pXuOJXP0meO3jk7pISIEkVCELlWIklkbV7eknVjCrtsSd/Z9dUZty2sZcVDvF5Rupry4A6ZA6A7mteTjrjovyP9avH4456L8j/WrsfidDr6GDwsybBryoL9MN4L8j+NH6XbwX5H8ap+JUevoHhZk8G6+77KHbNQP6YbwX5H8aP0u3gvyP40fiVHr6B4WZOUVB/pdvBfkfxo/S7eC/I/jU/iVHr6EeEqE5QKg/0u3gvyP40fpdvBfkfxo/EqPX0DwlQngKKghxlvBfkfxo/TDeC/I/jR+JUevoV8HUJ0VlioD9MN4L8j+Ne/ppvBfkfxo/EqPX0DwdQ2GNqzb3fLP8a1wcbbwX5H+tWa9oH8E+R/rVP4nR6+hHg6hPv+fjXjCoGXtA56J8j/AFqxbjr+CfI/1qPxOj19CVhKhPK5FeE1Afpp/Bfkfxo/TTeC/I/jR+J0evoX8LM2KKbFN5WqE/TLeC/I/jXh4w3gvyP41D7So9fQPCzJg15UP+lm8F+R/GvP0q3gvyP41T8Ro9fQlYaZM15UP+lW8F+R/Gj9Kt4L8j+NH4hR6+hbw0yXAr3FQ/6VbwX5H8aP0q3gvyP40fiFHr6E+HmTGmvcVDfpVvBfkfxo/SreC/I/jUfiFHr6B4eZvfoz7WvYXkF5GokaBy2hiVDqyPFImoZKlo5HUPg6SQcNjB6c9KvYaw49azcW4fI63ccJaWHSAZHij1CG4iO6z92ojWZHKNhfrgAjij9Kt4L8j+NWD6GfThd8KM5t47eQXAiDrcJK6/q+80lRHNGQf1rA5JBGPCsWNq0a0bq9zRQjOD6DHgowg366hjqCB4/PFIWFqwbUfPzOT18Ota5B2gdc6VQDJwuGKjwAyxbAGwyScDcnnSv/ACnk/dT5N/WridzI6ffQNtx8aysOzj3EixRAtI2oIgP1iFZsDJwDhTWqW/a2RTnRGceIb+vU12L9KE9pdRXUccDSRMzqsiymMlldPaCyqxwHJGGG4HxhUpXJdeDQ34WrbEYwRnfqOg8al606TtC+piFjUMzMFUMEXJJ0ICxIVc6QCTgAbmsl7SyeCH3hvkfaqXSkRGvFFo2sTbFeaDR7Wd9gee42YnbwAFPOy3ALiWWOGMgNJKkYJPsguwUFsA7AnfyqtovSBMNgkI6/Vf5/ylS3ZX0wXNtNHMkduzRuHVXWUoSNxqCzKTg77EUnw87j3iqduJ012i9GS8OkjEs7TghZWZdAd2GQwjh1Aoin6utiDlva20iI4zfSXdxrI7sBVhiRPaCQrkIpJ5kZJZiBqdttPKqt7Ues9d3Lq81lw53VQgbRer7IJIUhb4KRlidwedHCPWcuoiClhwzIIILxXbkEciNd6QCNtwByFTPCScna1hlLtCEIK6bl8jtLsbwqLhtsJrh9GF0hTjUS2+kD9qRtPLkoBJwAdNScV7RGWR5Dt3kjOVBbAyzMF3ABIU4BH8TXOnb/ANYu/vXV5lt10LpWOJJljXJyzBWnY6m2yxPIAchULF6ZLoDGi3x5pJ9/e5peKwTqRUY7L7uXwuNpQbnNvM+my5I627N3gDKze0ucEdBsuknoASRvuNjswrbo+L5wqMWJJyIyW2ALAEaVLFRsWAC6U2G1cW2vp8u1UqIbXJ0+1onBGMYAC3ATpz06tzvSyesNfDfu7YkjGSs+fn9Izn8a5b7KrrSNvUfPtChN3d/Qp+iiivTnngooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z” width=”607px” alt=”24的因數”/>
但希沃特單位表示相當大,所以常會用毫希沃特(mSv)與微希沃特(µSv)來表示,1希沃特等於1000毫希沃特,而1毫希沃特等於1000微希沃特。 人類身體所能承受的以輻射場的強度與曝露時間的相乘積計算輻射劑量,因此以“輻射水平”的單位“微希沃特/小時”及“毫希沃特/年”兩種較常見。 24不包含本身的因數和為36,因此24是一個過剩數,其因數和超過本身12,這個值稱為24的盈度。 第5個半完全數,和為本身的其中一組因數為1、 2、 3、 4、 24的因數2025 6、 8。 希沃特(符號:Sv)是基本輻射劑量的單位之一,是一個由於人類健康安全防護上的需要而確定的具有專門名稱的國際單位制導出單位。
24的因數: 計算結果
爲物理量劑量當量(H)、周圍劑量當量、定向劑量當量、個人劑量當量的單位。 如果按照國際放射防護委員會的標準,來自非背景輻射的遊離輻射,一般人為造成之輻射年劑量規定是不超過 1毫希沃特(1 mSv/a),換算就是每小時0.1微希沃特(0.1 24的因數2025 µSv/h)。 放射性職業工作者一年累積全身受職業照射的上限是20 mSv/a(國際放射防護委員會推薦)。 但是偵測環境如果超過20微希沃特,就是緊急狀況。
iB/3Uh6I6hStVx5LL0QR5LYOEFBQVA89lc9qburNT2zTcSVc9V3KPDYaymMrzCFKI5KcZyrA9gCKnY+O58tAX8LNZGW0RbQfuVuyZLhuiFx1tuB9pSMZG4YI3cZzx+HvWhrTrdpvo9p1q8X9EqV9qeLUWIwAVyFgDcQokJAA7nPHFVf114qbjEnOJ0bZYxKDxLmEqKvnCAcDn54+lV+191Z1fr+/IumsLsZao6PLYabSG2mUk5IShPAJJyT3OBWng0V8xHrim/3VH+P9M3D3Vp+pH6Qy5RVx43TrRUdngqkSLy4XDnH3EtNKTjHPqKz/wBWvrRv6RaG9Fbja10mmPJaWPMkW9RU26n3/ZrOUkD/ADHP0qjM6Z5zKlrPrBOPfikYzHEr3JVg1Yu0fBa3Zs+/NrrNQy3ncX8rpBr79IVoKPpaW708tE+VfHEluP8AbWUiPHJH+0c2qJVjvsGMnjI5qkPVTxGdWddJdRqPW14lwH2D57H2xbUZRUpSfJDKMIxgAnjkHHbOY5k+bMR5kOR5L4HIz3pAmKvQhTVSkechLjKBk49ajtSE498ZP4CmG4WNgtPos5PnunhPNkOBld28dk79E9TGrk4i1Xl3a6DtZfWfvj2Sr6+2fpUmxWmX1JW0rODg/Squ3lL1vdchqQkLbOCsKB4+Kdug+r0y0q+xXoF2Oj0peV94J9gr5/HvWPzsXc8vatlgZn0Bjuyna9WdyQylTZ2kdjTLdc1DEdWhpQcA47ZqQ7BqSy6ihJdjSG3GlpBSQrOf+NZpDdnUtTflJyDyKgMe5ooq7ZIa+kqMWf19LeSl5BQlJ+MZp5aeguN5C0uKUPel5tm2MAOJY4HfApQjzojje5tsJSO6/ampZC4Ukue53crXl25tLIUoYHuaZN7nNMKca3kjJz9K3tba8g2lkxw6FLIOPVUGar13NkJcZgObStPqdP7p+lNRQl/JUd8m0cJT1nr4QD+qbOvzZ74CdxH+zSe/547Uw7Febe8/9kd8xEl1eQpZyCf70gxJIYkuz5DinSkHhXdSsUmMlYeQtJOQoEEd85rQYUn4Pa5vuqTKaMmw5SPKfSl1tLxwGk5UPgk8f7q0TMckyFFXAaG1P969uD61SXm3EpACiSr344rVaJWkq9yc1pXzOeeFRNiDRylaErDJJPAVnHtWV2WhwgOJCtvbNajSilgIPBPas6GGVJBdVtJ+alNcdu0JotF/UrZdF9LWvSWhmZbM9Qeko+1PNELXtV+6VbR7ADvj8femY5c7mblNuzq1Nx1yFKZDRBCnFEgrPc9vk8D3zSnqbVQhQC3Ft0UTllTbyg6lZ8pOAcjHsAQOPjmouk3edLUoW+WWW2lB3J52HOdox2ABPbvk14hgNDJpMiTgn/C0OU3+VSvbp6dQTI1uRFQhmIE/tWnA4txSlZ5CPujA7HnvmpQduE+3tqSicUFKgNiVAqwexSlOcD5wO/FV90bqW3OayiRXHhG81QW+6CcpIHI757ge4qU71dZa0N22O9DdZQPNTHWErcLaVYzknOTkYGTn3NdzQMuQNafCVpuOGWSnOdU3K2FMZtqPMdUlJDW5YeZHPK+/p44yBzmly3XSM8FKE5IlYHmoCwgNkjP1z+NRM3dmLhDkQW23Lc4HlJK2EbnHNoBycI3JPJ4yofWlZiXDgJEK3SEvySktKeMUtuA4zuOACM/4sgfSoLtPfK2m/SR5Vw6ASNpqfbesmkXUQHJ4UpY24SRkHnHt74OMmt+Ve4LC1PKT5alEHzVEjd+B/wCeaY0WTJkIjtXe2maArc5JdjeUsDPpG7IIAGfUMn6c5rJPkRp14bj7pCWI7JW2hQPlHnA9J4P8OaaydPdYO7+yDjtH2T0/WBT5khYW8VYStSHyn09ySk5zwRWwxqSO2Ueso8znduICQOxJHxTIuMS6uw2Z8ZSkMBagpYeU1sSogbQEjBx9SSP51pTrYt5yPAizHQ2pJS8pUh1WMnGMcZJ/xHn2GKhx4JkH1PsfATLcQP5v+ydCuoDUW7myr3+e8pQaCHhhagTx6gATgfIxnH4p+tH79NiebL1GiJGO1hLCP2hKiQTu5CV4HGM4/HFNWbbJ0u5x1rf85UJCWWkPo3O7MhWUhfII/wAQPzxSpedISr800qUp1wtJV5TDspLYSP8ADkZIHyQPx706IZWFjg6h5Q7BHwm5ZYDumLpNmy7pGcefS4qKpp1KyGhjhSPY9uM8U25Fwaut0RNnSGhLcCiVFAyhAJx+HapBRpBhpNtkPwEIkuDe4ErVt3fKScFQwME4/vUJ3PUcE3KRIQ2lCFOkOJHASCST/X2q7wpI3Em7KYnhjY0Upta1Eu9MqujCiQcJV7dgPz7Y5/Ck2VqBzGQTj/rUr9ItIK1rZZE+0BbMKOy46/KkEJbQoAgJ7knhIA+ByaadyYZ3qU0QpOTgpOQavDG5jQSrTDnY62A8ha7t2+1S0IUokk+9bF+td0lwwqBOdZwnHp7VoGC44fOYA3J5TmsC9a6mYb+yDTxBHAWHBg/lRG6zSn7zdBJbULVwP2ZVw9J43KTzTz0vZbdp5v7bdnowUs5UpSgFE/P1pqhrWl/Id/1SM2P8UgJUf4A1vW6xthJjaourK4iOyWHFOurP+HeQMD5xUxrCe6kNhv8AMnZceqFjQDBtLb9weHpAYQSlJ+qu1JkRq7zFGddowZaWrchO7dj863oCLPtZjQLexFiMgBttKRk/U/J/GlK9y224CmQQUqThOBjFR5iB9LVHkYxh4Tck3VLshMWMSlR7nPAHv/Kpm6fdQLPb7fFsqvMYRHbCUyYqylwKzySM7Vj6YB/zU0/DzbIUfXke83JbIQPMS156QpAy2oEkHjHJq1TfSbpnrCMt24WG1iS5kh+3N/ZFBXzlvAcP/WBzirDExY8iMteslrOQ6w3woz1j1C1FoKypvUS4S50aVkB9CVFtteBgOk5KCfbnBwcE4qsvUHq3qDWU9dyvt3clvqTtHmLJS2B7JHYD6VOt2N/6Z6im6RleVNitOZSh9sLbkx1E7SpJGDkcKSRjII5FRjr/AKD2fV0WRfel5FvuQCnXbDJdOx1PuWFq+4c5OxRxjsoYAOo0L8JpjfRaOfcm/wDPZZHMgdkPDr49lCszUi3XCFKB3Dkg9z7UiTpSypT61YK1cJznitG5MT7PPcttxjvRZcdZafjvtlDjax3SpKuQR/atR2UtxKSVZIFaP193ZRxAGdkoh47VBSs7h2+KT3lkK21jEpfKlK7c9hRIVwl1PYiuOfuCWGkLC9MTESFFeCT3zSTdNVuOSUMlkBmOsKaSRj14wpZ+SeMfArecCJIUh1QwB2xSFLgJddQnulSwASc+9VeZJJtpp4U3GZGXchIc6T9tnvvHKt6VcfUHNaLW4oBUrJ5BPzUgTtL2mAwXfWFkHndnk0zXoCYyVNgKwCSM1nyw3yrlkrKpqWdG6nu1lmFmBJUltfIbUr0lX96lOJ1gdW2EXa2h9aOCrJBA+D81AxKm1ZSogg5yPmpAtXlXu3tPyWcrPBcBPf61V5cYY7dSu8KQvbtJ5T+c6uQm/wBo1BkAj93flP8ACkO/dZrvPZXHgxPJHYcYH/Gkb/RpKjlK+PasUjTyG0/7TmoQLT4U7lN64zrlcXVyZchThUOQe3/P0puT5CkZG8/UZpwXqdDgZjR1ec/7gdh+P1+lNOQHJLpV2z3FSoo3OF0oU0zGjaCvXQPsgcB/eGfrXxbm/NntjHpCwon6A5r7WlSIvkqOSpQKfpWza2fsxMhwZB7VYRx7ntAVa91NKWJbynlEdlOKLh/A+1Z2eAlJGMCtOOF5W64c7lbjW/HSFlSlc8ZTV9H+ZVD/AKRSzKJCRjuPatttpakAtuA/O72rVQrapK0jKxjH/GvvackrdKCe4qcw0bTClnXMiRqRElm2QHo7Ty1bJAbKcpIyQgADcOMZPz70x7Sxe0z49vgstOrUQ1tUpIyR2GVHGf8AjVhm1xnUupdW3NuTraG2fJaKiBjlRcOcJHY/wrSdlJjxj+p9OWxD/npbcfJWT5uCMBGNoHbOCByM14dj5DoGelsWvGEQKcbTU0voqBNlqW+iSmZkh3Cx+yWO/P3NuOOD9akZm0x4bPk+bHktkENJkKDqgvGeF8gHjgcfn3pvrtt3iebNauqJLYQpS4ofSvB7E+g4x3AyT+NK9kkJmW9J3Rm4SyttSUPBzCwPWTtyRjHOSeTximHRS36gf9k5HpxjG4O4Wa3X9C7k59laDbLY8t5bqTHBUPYq2gqBz9RmtrEJT6yysuynWlFbqJHKgOOFAJwrsMd/41tpgQC2zGb09IT5QKHFJCmkqHcKSQNwCe+Tj8sivYF4iw3Um5uSpDTwLaQp1S1qWkj/AGaSMKVkdx2I9zTrZieQ0qWOBawNraacbSzImPoZYSW2Fuqc5AIKgSrlWecEgDBpSdtqnUxrlIfRJDm1WC6jJQfuoJABTg9+/tX1bo6xPYmPtogIwlpt3zioqaUCSDuUVFXsTx+OODlSh6Iy4zARPOHFNNjaVoCie4UkYCfc9vmnXzEOA8lLBsIiW63sSUlmY0zvV+0jR3i4FJCR9cn5J75PtSuzbrU3FDYfWFN5LZIKSk9sD44OOBxSIqNEvDzfnPtFtseUtJA3gg5OFckHkYOBxilFaRBXEfZbQPs6FoBU6QpfurarBCj7578VCcyQ8BxFfCQ5rnUAVnZtFvdbckzJATJz5IWlxKSlJ9hx884IPzWuxGjw0IlBJCWv2YcUlLfyAMHBIz71sQ3rgGpDH2JCnnE+Y0tasnGPbIOCO3btnmvu4KfXDQ24xsVHHmrWBvLasekAEBJyT3OMe2aZ2Sk7TyCgNJFL4nIjpiPzG4v+sSkEKWVuOOhJG3PPA/kKa2lPDU1rS/ogRJSkMbvOmKdaT+xb91dueeAPc96kHSlhlammQ4aXywq6OIQolXDKcZWoKHJOE/T8RVkLHYLPpa2ps9obUEZCnX3FbnHlD95R/Lt/76v9B0V0jvWeaaO6q9RyWYzfTq3FQ51wesnSHou7pzS0cQYbMcthLY9RAHKiruVEkZJ+v4Vz36Y6z1RMvioLksuwJjxPkr5DRPug9xjirj+PC+vsaJDDSiltzDZx7hSiP7fwqpvTCxBlcaWkZUFbh6fati+ISODD2CrseYwR+oO6lBb8y1yzGlILa+ChQIIwaW0PMSGUhxKSsfPY186viCZbGLg20fMjpAO0ZJSe5/KmpFuyopT5yiplQGx1JyCP+TVPk4/4d/HZaTAzfxLL8pZuEPBK2oIWo+7asVpRrFqWU6fKjBtCv3lL5FbTd/THV5iHkrB7DvXw71EU2ChtsJ+tNhzz2Vg7I47pwRLQ5ZWPtMt/e+BzlWf4UmSZrkuSGyOc5puTdZXK5O+Wg5CuM/FLeno6nClS8lR5JPJrhtvLlEfLvTvjzJFp03c50LPmxoTr6QO5KEFWB/Cpo6G9Txf7XaZkF9e2X+44fcE5B/AgjNQ4lxmJb3W3/Uh5CkKHb0kYI/hWt4RnZTVok2d9RWbNPWylxXGQQk5/jvNWGmOLiaVJqgb6dkK0/WmwR9U2ROoIjIFztDZcTg8uM/voP4dx+Y9+ILiSH5Eht+EpUZ9PCilWADzkEfyxU/SpYdtkmOjeVPsKawr3JBGPn86rZpy9Iu630uJTFuEclp4ODareBwHEn6jv3/GtC4LLg0eEr636cWDrhZlMOtsW7VkNvZFnElIeSngNuYzuQQeDjKccZGUmnV8sl70nf52ktSw3Yc23K2ONO/Hyk/vJOMhQ4IPFXUgynmglC8MzSAAtI+5n94H4470n+KLRVo1f0fn9RFRkRbzpNbTbcjPL7CnEJcaWT3+/uT8KH+Y1MxshzTtPZJezcOFSf7QocK4zWVCwU8mtJZLje8KO7Gefc4rHFkBSlBasEcY+atA+jymTHYtZ33fLJQTwrntSNMac3l1p3AScj6UrPLCiMpzx80l3PJZITxnmo+SAWp6AU4JyTZKH4YeTgqdbSd2e/wDz3poz1hAV5pIyo4x3rdgP77egZJIJHfsPitSW0pzO45Se4xVDI7m1axRgBIz8UrwoAevtg0++lDrcxcq0vr3LSd6OPY+38f60xxlh0MLyEHso/u1v6euqtO35i4pWlLKVYc3A+pJ45A+OD+VMZLPxEZLO6l40voyAnspqk2Ex0+YlH8xUXa51q0wpy1WpSXHk5S44njafcA/P1/KnX1B6ioYs4g29IRMlBSfMST+zb4ysZAwe2DUMFgr9al5Ue5I96rsXFf3cFZ5WW0Daxa3210f94Qk/OM/76+hKkr49KQfgYr6UyNw4rIhvBHoqwa14NE8KtLm1aGmCo5Jya3UNg4A+6jmvlhALmP3fmthtvAVkpI/Gp0MdC1Ee8krMyCEl393tmt1kqSjdjg1pI8tKwU8J/wAOe9bjBUpWUjKc9s1OiNqJIL5Ww2oDknvzXri9ivV71hc8xIDnlHbn59q+UtvuZUAFA9uad9Qt7prYrmos0ZMZlNrcbYkOlOSWt4xjJ2E4Kcn3NbE7TT0iQWY0sNOuNHzy45w1kcYUtSk5PPcFP096WJjDMh1yVBDUVwelbiWfLykHsFJ24HGeKTxFt1raemKhNIbKi48IwOHCe6iScK9uM85PNeZt0hwN2toc9tUk1jRDdoSuRKdRNKMfZ2FguFIxjCVEbSfoMD8KWIzjSXUogGz22Qw2lAYZbISFkY3OcnJOeyTWSGpD0Ey46g077qdb2qKT7AL5A57e3zXpkiP5af1SqW8hSmVOp2YSfqVKBP4cV1mk7j9bkh2aCOy2rTAfhpaRIkpdWUqWkZ8hJ7gkjAyPgH8/rvMQWrqmWsugLH7JKWwF7sDsT6t3J9sYxWm5NlKYS67DJbVhADaUkn4weQkD3zWNm4GFOdhPOMsKJSW3EuIcyg47pSAU4+SQKWdKiAoOTYynkcBESLF9U5DLkde0tpaXhCgojj7oPBznuM+5xSjFfUuLgQYykgpO8bwpIT39J4wT/hGeM57ZXbB0+1dqNKJbT8OPDPq86UgkKSOMp7lQI9xxxj8Hiz0utjThck6rmOLWMYQwEoA98Dcfy/pSP3bA0242nfXlf4USXK/6Zt0dq6Xec3AcUpSEF1SE5PvyoZyM44Ix8Unf6f6KdiF6Pf4hWpKgqPvA3/AO4DgAfIz9an89NOmK2t0zRlsujyEFoSrjHTKfSg8kJU4DsBPOE4H0qGOoXhT0xqP7VM6e31mzTj6k22U1iK4r3SlaeW8/9VQ/AVMxNJwJXbJnOaD5Ff8AtR8nJyYGbowCfZJo6i6FYbECVfregISBvUoKSMckcE8VpSOqfT+O+1Jav7KGkK3obbYUoKJPyBlI9/bvVU9StXjS2oJunb5HXGmW51TLzKlbtqhjnPvnOcjvWkL8lZ8ttYWpWEgAZOfitJD0npPDi9x+4VC/Ws1vZoV7uker7J1A1q3p/TEeW0qDHeub0lTWEgJHlp53knKnE447Z7dqnKDqcKcXClKxJZyhQ4Gf8w+hqjPhv6tx+jdyvV31LaJbka4w22kLabKltbVbjlB/dOfbnip0Z6zaD6mFMzR17YM8DcUFwBY9yFA8gj4Ipx+Dj6eTFifl+VG/ET5X1zcuWv4otOuaw0qplLZdVFKXSkdyEnOB9aiPRvTdJhMyLNJCcAfsXR247Z7/ANam6RqlNyW21Ow25t2LII/AEfIzSl0U6TW7UWtpdkulxlxrRGiv3J1TABdKW+S2nOQDlXwcD4yDUd7mRNMjzQCW3fKRE3uVGAtcliOuPcYqmEkYJUMpx8g/8ajK9WpVgurlvdSfsb7qiysgYQSfu/HI7VfBejugTjakKn6uUlXcEM88Y/w0nnoJ4c5N2/W171ZLudnMfeLDLjvNuF0pyN8hkjAzjsOCPvVj5+suncxrgMpgI5PIH+Vp8PQdawJGvMDqPx/q1Q2ba8ZUyQEnkFJOKTDanVrG8kj8avpL6Q+HjW9jn2VnTjPT+4oDZg3NiTKuABz6krZWoBXH1BOc545jm/8Ag/t9pnaRm2XqRH1BZtQ6ii2CW8xbFQXYinVDK0oWtYX6So8kYO3vk4rtJ6h07VwPwUwcTfFjdx34718q7y8HJwbGTEWgVyRxz25HCrNAtSW1pJQKe1jYDRSpQ9NWqm9CvDBaLhJtrlm1u47CdWw4tM5ohSkHaSOfkfSszXS/w0xsFFj1xntj7Yzn+tQZusdDjeWSZLQQaI58fZPN0bUngObC6j27f7VU9U3AR4Di0nAQCefoKefhxtTcHS0WQ96VS982S4B3Kz6f/FCRU2XHpB4Xbqy4xJsmudjw2r2z2gfwHNPGP0H6caft6nbdfbtatLRLLAmJQptL0pBkOONNoz2x+zOTyefpV90/1TouYZHQZDXBgt3fge5VJrmkajC1jZISNxoX5Pso4nazZNwCGVAspUlvPvt9z/AUjdUOl0fUcZeoLK+za7kjG2apSW2nEgdnCogKT757jAx8GZx/0HWOTAg23QLV4hoQ0H582S8mQpWcKV5ZO08YOBgH4FaH/RZ0SuU++asul0v+sUR463o1nujyo0aMkuJA2KbweArA+ff5p+H9onT2S+SNmQDs/qeL+n3+yrn9G6vCGF8Jp39v19lWxGotHaKtrTeo725f7iz6izaFYZbURkp85zGU549KfjkVCHiT6+aj1zYo2jozDNpsgdDhhMLKi9sIUC4onKsEJP41fe5dJfD87YbTqO5dEAmDdHnYzrsbUEz/AFcoXjgE8kpBUBkdiPrVOdSeBvUt68YDvSNGoVWvR96gSNQ2K/vMqltqtLScqQ2AUJceQpSEKTuBAWlZyCkKtNK6r0vVy4Yr+WgON2OHCwf0pMZWgZ2nkHIbQJIFc8jghVht0gusDeSSMAZ9qwSctPbknAB5/Cr1s/o8ui7KFKa8S12wcjP+i4wP/K1Mw6PeFfTCIemLZ0P0vqG3MMMtv3a6R3VzX1BIDjhWo7kqJGfTgDsMezWoftN6a0+Br35TXc19JBP9Ae3z4UnF6O1jKlLBA4cXyCFy5TJS80HEds4rWuQ/ZHHzgVf7UHgF6AXC/wBzuWm+u12sdrlyVvxbb+ozKENtXIaDqnApYTyASM4xnJ5Kzoj9Hb0n07cLhqvWGrZ+v9MCzOTYUVlpdqdU826EuB1SXFFSQDlO3b75HAJtIutdDzIXGHIa4taXEAgmh+igv6d1PGkaJYXNBNAkVz91zgsnCHWDzzkVsvNkAiujOrvAf0W6kaIk3no3Bb0DeLRMbblPXa7vyoTkVQO4q3BSgoHaU4xyOTR0t8HHRjplpm73Lqx/ot1NvzkxpNvYiXCUwzHj7QFZQNu5e7J5yAAMYOc0snWWiDCGoGcemQXDwSBwaB5VkzQNROT+EER3g0faz7nwuaFzib28EcGk2PI84Khv485Ayn5UP7/7q6ZdWvBb0c6saftV26SStNdL70xKdbuUOdPkvR5LG0eWtCVblIUD/hwnBPvg1HvTH9GDraH1u0lL6jO2DVvTF0SJdzuNmuSmQpKI7paaIUEOjdIS0klGfQo+oHOJGmdS6bqUAyMWUEVdWLr5HhIzNJy8SQxTsLaNduL/AF8qiUhp3cG3VlWwbOT8f+/+VY0skrKfaup+t/Bx0f6w9MdT2vo/0dtWlta2z7EbRJbvUgNubnwl0PeYopIDSVnJSVZAxz3SOkngr6TdIemyJfW/RWnNfa0uNxfC/JvTq4sWJtAbQ2Gynk4JKlJzlRwcYFNjrXRf3adV9T+EL/Xg0ePPKcOg6h+L/A7P4hr+4sc/ouYLre15Scdu3++vcKAwPeugvXb9G5cNR67F78O0vSVm0vc4UV/9WXHUDinY8tST5iElaVrKc7cbjnJP0qt3STwv6n174kG/DzqgrskiBLlJv8lttLxt7EVtS3XQT6TuKUIQe2XUHsau8bOxMyEzwyAtqz8BV0uPNC4RvaQewUHNBY9IPFbTSlLSWvKG73P0rpBA8CPg8tZzM1F1KvKwSSpT0VnP09LaacVr8I/g6iK8uB0n1nfHO6Uy744B/wCRIxWYd+0fpuLj8SCfYAn/AAFct6T1WTn0SP1of5IXL4oClBaEZSj7wzWywFH1IaIQOSMmus1j8HPhv1QXdMjwxTLCxcWXGBeBc7i65EXtJS6FOHYCFAfxwcg4rlZerObPebhaA4Xhb5T0Qu44WW1lG4Y9jjP51pun9fxOoI3T4VkNNctLfuLrhUup6bPpbxHkAAnngg/1q1pq2O/tEpw2DyM1jLBWctqUE/Q1soYz7d69Mbnsa0exxVVuVv164hqhLVGdjtNOKDgdcCvNXz8KJBT7AJR8mttrU32xxqU4y+pG4JIcYQE57+kHJ/Pio2TYrmyG5Et9pvyCFh+QyoMKxgqRgjCT8knv7kivu6iJapce/Wy5PvtvJC23Vskttq3Y5cAAzk44AxmsQ3UIHOEY7/or4RfV25UmQr07MmutuR4TSthKUlP7UADvwTgcjkit+NPleQ48iO0nZ5iRvWjcPggAcJz7d/io3t94n3BlpmO+8647IDTK22vIYGACSXFbjtGSe/z+AdWkft+opTemobJQ+Xl+VPisBENDgyHFjO4EZz7jPx7U86WMuoFK9Nx7pRsjNyuLnnOTVTi+35h8xl5O1eeEpQTx+AwD9alzRHTaY1JF+1DtUpQHlwFJSccY3OKJPtj0/wAaW9F6UtGlWUlElUy5EFLs50DzCD3Sn/AnPsKeTVsRPW2lLqMY2kqPce4PzURz+DSltj28lakpuQyAA80QAAEoVwjjgYH8qQ4t0Wqcyy6rlwlABV+9n/hSTrqLI0PLMmHMxFecAdZSThHPCxn2559hnNI1rvEK73tp1hwqkR9ziUBWQcAjP86Za7cpMbS4WFJd0uUa3xOX0p3DHAJOfwqGOqevG7BEEkSAnKtpVgpycZx+NLGpWnkNKflTXQsgbcu4A4+M/OahzV8SPepsa26hWmRBW55gCln1KGR7HP5U6xxBApJkY0MLiopu+h9U9fOo8286eftcKO4WIpmT31ITIdSgA7AlKiogYHqwDtGD8PS1eDq16XcF2l9RJcm5tAuBtEJKGfMHtkqUdufbAOPr2durpEWywrbcrTtZW3+yStvgq2AKQT8kHcPwFPSXf1XKKxcY5O2VHQ/x3BUn+xqyflSNY3aeyzdB7zYVUrq/IiTZFtntqbcYKmXUKGPUD2H51HGpXnhcoi7K45ClNO/snWFFKwfxHNTB1rejDWLLrLaUrdhIVIx3U6FLAJ+u1KP5VD6EiTfm1nkMBTiv4GpnqGWMOPlcjYGvKf2lvElqKzL/AFHrdpdyZZ9CZrfEhIz2UOy/5Hj3q6PhN6j3vqRfHX+l10gv3G1xi7MfkkIZajqO0l5K+Rk8Y7nuO1c1ENh8OTXMnzHikHPtVov0cF+v9h633rTFp0TfdR2/VOm5EG5sWgtJdjNpWhaJRLykNgJV6PUru7gZJxUPKkljgf6bQ40aB7E/PwpUcET5GkkjkcjuF0a6hXyyXvqNCtV4nxUact4QHnIachX7MKWfR7lXp47DtSLry+WvUzoOkNEC2wmdrjz4ijzXBtGCopyEJ24PfmlOLpHT0HrVG0izE8+3IKQ4zJPmFajG8w78YB9RHA44r3Wb2tniux6tkQbBZoKwwhmG2UNyAjG0tNA73BgAjJCRxyPb5U1CPKy4c2XKaAXSlp2tDqLQON7qDWC/azyva8R+Pjy4rILIbGHDcSO5POxtlzj/AEHCSWLxb7lHtll0zpeBEEJPmzZk9pL/AJyc+pTqinCUc5454ABGAKWuqOi7zqy4wbRZJNv0boTTv2fVDeo7dH+1LkXJtQSlKG0nCQgkHnk7R7Zy1VT4khyLa2kybRpyRJCHZBQVuPlGNynFDhahnOwcJyOCeStdR+oup+llzbsNt0bEf0CqEGoa3kKdjz1qAWXVvIIBXlI9Pxk81tP2aRz50uQ1mwvawU4gNo1QDWgA7CO54tZ3rF8OI2FztwaXHi74vncSSN3sOaS0vVe9wuK66WsOKyVOJ0Idyj8kknJrT6gdTVXq8CzaVusWLZyG0qmIhqaW4Skbir07wAc8JA/Ombo3WXVbqDDn3TSfh50NJhwZKohdkuqaStwAKwCtYzwUk49lCnpd7Npk9bo1mhwYX6pU8y2thsJ8oktjcMdu5pPWbNfhxo4MiWJvqSNYfTa5rjd9ySePeuU709+6ZJnyRMkOxhcNxaRxXsO/tfCzaUjdDrQr7fqHVLl3l99q7fJSwlXztCPV+Zx9Kc8uPLd09qXXEPUca7WudaEsxGk24MNxVRnSW0pbcByAVrPq5zn2xiLJ3Utq33642WT0p0k2IEp6Md8d1K8IUQMjd8CnpYOoM67aH1BPu2mbTB05CZTDh29to7JE5S0rTyVZIT6SoDHCvfmtVg9NZ/Tel5IyPRjhMbrLGu3XXBJcST/tZ7J1rD1nOhMJlfJvFBxBFXyAGgAJJsTV5udjbvM/W+nLSHwtTTEm3xvMUlKindgNcDII4pKjGbqPR9+u1wuUdpdnXGKUMxW2vPS6op2nYlO4Z2nnPasF4jzprel0SIEKIudksNMsbUBtb+ElQB7ElSvqDX1dbrOEWXog6dhQ7i7cW23VRG9hd2khLePf1kEH3zXic2TGLjl3bWtLedx9RzmfT/8AUgmwF6PFjE0+OgS4HgN+hrX0ef5hQolGhrYNV3CJpQXy5QVP+Y4kJALCCApWcbu+B3A9zSH078QvRvqj1k0V0/6V61XrJyx6Y1HcJl0TBfjtspdSyG2QXkpKlEEkgAgBIyc8U/4TTGgeqjMaQGUt2q2ALU4raFOCHk//AMlE/wAaQdAdOeg2gtKXbqzoTpRY9I6iQxJ08wbUtYS628lpRygnBwcHOM4Qea3PRM+maJjztzjWSwSDufysAu+aHJ49/CznUceXqc0TsYXC4scO35nk18/qkrS15hWRBl3PS0G7w3HkNqVIQSpOBylBBABIHvUh65TpvSWqLO4xo+wP6burbTyHDFJXsJAX6tw5AII4x6hWlovS1vvPSu7xZVxgsz5skSIaX30NklvgHk8AnenP40rSNNvag6bRdPXy9WWJcbM9uiyFT0rQtk5ylW0kjAOPfsKzmk6dlxab6TWtcXsErCQ3hzXHdGSfDm88q31DMx35u8kgBxY4Au5BHDwB5aeOFi6gJ07pSVAskXQWnJlxuLzqkIZS4R9nLpTGGMg+YpGN3sFA4yMGlVerdIKs96gac0sbu9pe4uaRucWE44Gm3nYkeXISnBPA85tOTyCFAGmT06cl3nVrmoLvOiSnbHCT9kTLkpZS+82goYb3K7AkZKsEjGcZNV/8OvRbxi9JPEtFvuq9SsyNGaqlzdS6tm2u6pctcghDgO8LGUuea40BgZKUgZIScei9HtZruPm6jGWQbxtYAGW1rR9RI82ffhZPqAu0yTHxJA6UtouJLqLj2HxQrtyrT6BvfT2Rp3VbStGy4FtZYYM9pqW++p1JUv2UoFOMZJBH8qixc/TMvUCJi7PJg2VKxmLHcLrhQOcFbiu59znj4NObpzqu/wBnvd3g6Yske6O3YkFD25SQlG88gdwrdjJIHzWlf510ubkd3W8tNuisDczaYraW1pQM+lLY4aHtuXz3wCK8r1PMGo6ZjixujLgf4Ya004kW/htUfyi+VtsLG/BZ83enhtfWS7lvhvJJsVZqglvS40NqvVamnNFwoOnlAIU/ImOtuMqOcblhe0lR/dHPvnit/qGiQq16K03/AKOO2BSnXwLeqaH1NI87YnLiSQrcn1dzjdj2ptaMgQdeaoiWO6zmrTbmQpbENskF08ehKj3WoAZUeSAMY4FNLQvivga+8RmmOhmu/DbqHRt+WudFt0m4XFWxliFHkyG1hotJDgUI5TlClJychSgK13TOl5HUeh5LYWsBJFv4aSAQXNDQLDRXF9/hUOsZcWkalC55dwCdtlwBIIaSSaJN812+UraYsNylsTLxbLjGiPWl+OpRkPhpB3lePUfgoHH1NOPqTYenlqstre0fJZcmuqxLbamF/YNmcH6A+9bvR+12i623VEa8xmH4yDb3Fh+X9nQlKVu7llzBxtSScY5xjjOaRLzZ7TrDWSbB01s7qIzaSlKitRDuMlTqirO1PYDP+8CsedPGPoLXQxse/IJa0EkvBD3C2NA44ABNrQtyzLqrvUe5rYgCSAA3aWj8xJ55JoUs+orfoyz3nSbum32SlQjvXApkFwJd3oJJJJ24G44pBsPQ6b0y6vdavEfcL9Z7hbtfxUQ9PuQ3ipxtDzqQ+2sED1Astn0kggHtginZoxHT1cWRp3V2nmot9i7kMqly3Isd5wfdbcWAryjngnaR74PatyLdeqcS+xYmsOm2iNO9J7HBcfWmVO/XU64zlKUENxlJLaGD6iSpaHMpyABnKfQuj4526dnywyxRMmZyLIMbgKNtIv3J+VlOoJIzlYsb2yPdG7uQPrBN8Gz37D4Wp001hpzTlkSzNvr9ulm6olSFJtqJJkxkoALAKgdgV/iHqHtWKw6/cN/1F+sNYXe3wbpCmRYUtoF1yI44QGnkIOQFJGSMj2pe6cWZ/qFqJd6Ol7DA0/Hd3KbTa2DuA7MhRTk8Y3K/pkYStB2Sy3nqLqO3So0JMRqLNWyX2ULZYw6gJUEqG0bQf4VlsOTWIotNZiPaGCQtjOwt30O7hu+pp8XXKup26e9+a+dh3FoLxuB22ew+ngjzVqHbr0URfQ9EuHjk6xyG5IUhxtYc2EK7jaFABPJ4A965/dduljnRPrFqjpVIuv61OnpTTYl7Sjz0PMNSEKKcnCtjycjOM5xxiustnuMHS2qpmldd6a02gn9kxKVamvLYdP3HTtCSts5GeR7cjmuXPiysHWCx9dtVXHrVAZbv93kpmfbIjPlwp0cNpbZdjcnLfltoTjcVJKcKO4HPvP7NOos7WfW/eEjC5hrYGljmkXe4WfsvNOrtKxtO9L8MxwDhYcXbgR8EAf3UUgJCSr0pHsnPYV8lSO+QM/JrAr9orzAn7g5/KsKpW04S2ofnXq3qhqxQjJVh7Jdr/LsLKowjs/ZAW/tkdAddQSVElS1DaOexA/E8mtS2RVSZ0yJH1PJmz20F5TSEncQe604HlkAkDKhkHtkUzHNW6Kh3COqBfNPym2CStxcxkJWSTwpJUkkHOOCQPcYyK2Lzru3xbjOsr+rNMXB/7KY6bgzcmnUIGAopQsqCFbc7RjjjjOK8wEJYLYKC3DTGON3Kf7l41VBvMdmfBZhxnlIU5E+1Mh14J4CiHArJweVE5zwPbDp0be7jGdmXZENKGmF7XXW2EoSlal5CUqHKuPx+eOKhK43zp3PksiN1Et7Yh4WlpxaAogj1EOpKUKUTngY/Op0h9ROkY0/GszHUjSbKUoSp0qvEYFbhHqURuGCf5YxQ9gLbA5S2loPdS5pbXsKegAujzCcHJxUm2C/sBScKTgcnNU8f1F08gqM20dYNIpWk7gyb1FKVf+PTt0x4iOnzbZZl6/02062NqvMujCQT9FFWCKGlw8Ljtp8q0er7BbtdWOTapysIfaKUutKAcbyCMj6jNVn6daQ6gaH6yCBqGM5I083GfES4nakPK2jYhSQchX3vbBxkHnFO6B4lOkcWB5q+p2lw8nnYLxHJOPYeumDqXxIaCvZcQ1r6wI2n0rNyZH8PVTwJYbpEbqtt8Kwt7tFuZsqlvohyHXE7lrcSFkE98H2A7VVbqxdYEXUVstcd5sFoOOObDwnKzt/AUjXDrfbl7mEdUbG40597bcGc/wAd1IwkdIr44ufO6kWSJcFJG2Qq9MLBOP3kqX2+gI/Kn2y7z2pIkYCwgOBTo1BchL0xDHmJIQ+EpAPIB35Pb/N8n/cHVpe8+bo+2LK/U22pHfuAogY+eB/KoivurNHWm2s2ka803MUhW9LkW5suJUkL98LODyeMCl3SPU3QsXSTEJ7XGn2nStY8ty5MpI7YJyscepXt80/utlKjLC16YnVOaqRrKWFYy0EIHP8Alz/6VRyp37NGn3HsVAtppe1rq3Ttx1NcpbN/tzqHVgoWiU2pJG0Dgg89qZ96vVnMBqHGusRZKtzhS8kj+tWUZaIwL8JAaQV9obS1bYqAfvK3VYrwW9bNB9DOo2oLr1HXdY9o1DpuTZDLtsfznYzi3WXEr2ZBI/YkcZIKh7Zqtj93tBajIRdYh2kZ/bD01tKvNmP/ANbw/wDt0/3pueOLJidFJyCKP6FPxudE4Pb3C6a2/wAbHgw07dWdRp11rufJhr88MnTzgU+QPu7lYGT25I/EVh6keMjwhaBY/wBIbJqu7dTZ0sJdg2SE26whls8pEuQ6AUBPukAryOUd65gS59nWklNziE/AfTn+tJjsq354nxz+Dqf71jx0NoEYa1uO3aHbqs0Txyeefurx3UOpvJcZTZG2+Ow8Djj7LrP0y8dvSLrI3I0zrmdHs1vmJR+r4zEUNuWx1A4CU91g5OSCr8gcCRtY6l6dXHpfM0Rp3WM69qky2XmFPxVtoi7CckFWByDjaPnPzXExUqGDlM5jjsC6nAqSOn3iI1toF9hpu/N3O2tYSYkl8E+WP3Ur5Ix7ZyPpV3FpGljOZqIjDZWjaCLHHsR2KqJsrOOI7DD7jcbIPPPuPK6bI6ydMulnSR6B1YkahgQYd5+1tzbPB+0hYcaDYCgDkYxgnnuK1emviT8Jusr2V6U1RrWS9aFtSnBIsvlI4X6UknjJIxj8e1Vdt3iJ6RdVtIXHRurr7GswuUZxlYlPISlvPIWFE7SpKsHggnHAqD+netIvTiVeNIW25aelTVOPSHLmq7MtxX2WmspDbmdqlHnanO4qVjGaZ1TpHQ9VzRnZcQc/g3Z8dvKNP17VNPxDiQPIHtSur1g8QGibTqa7asu9yTCbuM12TGiqVudUhSiRkJzyB8fWmVpr9JnatCyYmmWdCN6m0v8ArJMmb9pZAeYZUQHfs+SApe0ZSFgDPGQDxR7V2rY+qrq7d51wbcdcICR5ySG2x2SM+1IYlW7OEzY4z3JdT/er3JfFNGYCAWnjnlQMTFdC71rId344XUxXjb8GVymC5I1B1HQsK8xto2VOGRnIQn1nAGcDBxx8Vo9Q/wBIN0Utdrnau6I6YvknW11LqI7d8hoajWhZyDLIStQdWeFJQlWBk7tv3TzYiTrKylObnDGB/wDbJ/vW+m82UcfraH/26f71m8To7QcWQTRwNDg7df8A8h2KvZ9c1KVvpulNVX29v7LoRZf0g/QrXDNtmdZdI66tGqFsNRrpOsrUWTbXFoTt88JU4l5O4AEoS2rHYFWMl2p8Z3gwdiRdIuam1uhhbr01V6csaw3FVtQAyttOXF79vBQ2oAjkj35gOXazl04ukTHz56f70LutmPP60hngj/bp/vSMjovp/JlkyJMdpe+9x97Sotf1OGNkLJXBraoe1Lo1eP0hPhUvcnzYvTbqa4iGkQWQ19gZYWy0pSUOep7eCpOFEEZBP5nQV49fDSkbW+jvUJY/xKuUUf8Ap1zjg3KBHkvNG4RvLUdyVecnH196VEXm0KGDdIn/AG6f71Mi6I6ZnG+bGYXHuaUWTqHWI/pjmdX6roOPHn4ZinL/AEo6lpHb9lMgrI+oCnBW3H/SWdLEap07pCDonVcLpsu3TbdfJFzTHXcUPPrSpt9ptlxSFIbKTnncQs4TlISvneq8WfGBdIn/AG6f71pyrnayAU3GKfweT/epuN0d09pxc7DhawuBaa8g9wmJNd1TKoZEjnUbF+/uuo2gPHL0Q1dri59H7VHXpHSUmHi06wuUgsPyZ7Z7yEj/AGTLgKgkEgjaMpBXhOh1D8Xnh66Uuqj6JlnqnqpOVb0FbNnirzjctwjc+rPZKcpOOVJOK5kx7xbAMKuEb/t0iskS7WqNISU3OJ5fOf2qRg/xqBN0R07JLHkGEEximj+UfO3takxdR6q1j4hIRvNk+T9+66XdOPGf0k6sWtR653eLoDV9uIKbjAhOqgXJnPp9CdymnUcDBOCCCCeQh5aj8X3hLtGsenl/vuv39WXTT7l1Zjagj2p9f6mZlRS2VupUN7mSfLAQFEJWcgDJrlc9ebIVeZ+uIK93t9oSP99eSL3Y5LC23LtEUVDGfOR/euxdM6VjZcmbAwNe8U6jQP2HF/NWuSapmzY7MeR25re1819+66kRPE/4KY1umWmV14lv/b1tKStGnJw8pbe4g/7LkEKUMH5Hviq5eILx6m4WKd068N8O5absb6gmZqR9fl3a5hJzhG3mM0SOACFkAZ2ZUDSpF2gMrUymbELeeFF5P96yO3S25R5c+MAn7xDyef5/FOaP0boGkyNycaFoe0UCeas2e/ySk5+vapnNMU0hLSQSBwDQrx8LoV0X8efTvqTa4WmvEq+9YNRRmUMtaxhRd7E7aAMTWGxlCzwd6BtJzw2AAdrX/wCkc6U2S8u6L0X0XGr9NWVZagXeVenoRmq2jzHvJS2doK9wSTlRSAcJztHNwXKLHP7OdHKfceanP9a2TdrctrIlx0rPuXh/enB0roLsmTLdA3fIKdxwft2/2knWdSbEyFsjtrDY57foe66laQ/SGeHbqDoeHB6gzbv0zuVqkvIRb7ZCk3FpxggbFh5pHJxnO4A5z371nHjL8Imkbfdr5prqNqS/3T9Wy2I9uVp+THTKccbUlKS4tASkEkck/WuV8a5WwLAVPjDJO4+annj8a2l3W0q5NzigjsA8mm3dFaBNmM1F0Q9RhBabNCuBQuh/RLHUGpx47sRjzsdd8Dm/c1ZVyOln6QaXpzp/ZNEdQOmcLXknT0dMGHdJV2dhyjGTgIbdISrzSnsFE5wOecksXxVeKyR4j4WlbXH6dMaVg6VTJSwEzXJrrpe2ZBdWkEIHljCfknnsKrSu4WzeS1cYo493U/3r03mI1gsXVls452yEkE/OM1fxafpuNkuzYomiR3dwABP6nyqx+TmTRDHe8lg7A9h+gSmTtwluQpRVwfxr4VvScKfSD9TWidQpI9d2hr/6xbNfIv8ADx63bcs/PmAf0NWRyIj3KiiGQeFHW45zXu4jtj+FeUVklcL3cfbivM/NFFCEBRHY16FEV5RQhGaMnGKKKEIz+FGTRRQhBUT3ozRRQhe7jXmaKKEIBxnjvxRk0UUIRk0Z+aKKEIz9KM47UUUWhe7vjijecY4/hXlFCEZ/nRRRQhGT80ZPzRRQhGTRRRQhGTRk/NFFFoRk/NGT80UV2yhGSKM0UVy0IzjtRk0UUIRk/NGTRRQhGfmiiihCMmjJoootCMnvRk/NFFFoRk0ZPzRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCEUUUUIRRRRQhFFFFCF//9k=” width=”600px” alt=”24的因數”/>
高合成數:24共有8個因數,任何比24小的自然數之因數數量均少於8個,因此24是一個高合成數,是第6個擁有此性質的數字,前一個是12,下一個是36 。 是一個用來衡量輻射劑量對生物組織的影響程度的國際單位制導出單位,爲受輻射等效生物當量的單位。 2、質數﹙素數﹚:恰好有兩個正因數的自然數。 (或定義為在大於1的自然數中,除了1和此整數自身外兩個因數,無法被其他自然數整除的數)。 2,質數﹙素數﹚:恰好有兩個正因數的自然數。 (或定義爲在大於1的自然數中,除了1和此整數自身兩個因數外,無法被其他自然數整除的數)。
24的因數: 因數和
半完全數:24的因數中,前6個因數的和為本身,除了4和8以及本身之外的其他因數的和也是本身,因此24是一個半完全數,是第五個擁有此性質的數字,前一個是20,下一個是28 24的因數2025 24的因數 。 從事輻射相關工作者(非女性)在緊急狀況下從事一次作業所受輻射法定極限。 250福島第一核電站事故現場人員暫定輻射劑量上限。 7、1個非零自然數的正因數的個數是有限的,其中最小的是1,最大的是它本身。 而一個非零自然數的倍數的個數是無限的。
一般而言,整數A乘以整數B得到整數C,整數A與整數B都稱做整數C的因數,反之,整數C爲整數A的倍數,也爲整數B的倍數。 24的因數 24個胞的多胞體稱為二十四胞體,特別地,在四維空間中,有一種正圖形是二十四胞體,即正二十四胞體,由24個正八面體組成,具有24個頂點,是個自身對偶的多胞體,且這種形狀不存在其他維度的類比。 高過剩數:24的真因數和是36,真因數和數列為 。 由於24的真因數和也是過剩數因此24是一種高過剩數。 24是第一個有此性質的數,下一個是30。
24的因數: 質因數表
佩服數:24存在一個因數6,使得除了6和本身的因數相加後再扣掉6等於24本身,因此24是一個佩服數,是第3個有此性質的數。 24的因數 24是23與25之間的自然數,是一個合數,質因數有2和3。 常見文化中有許多事物與24有關,例如一日有24小時、一年有24節氣。 以上就是質因數連乘式的一些用處,而且還只是一小部分而已。 當中求因數個數及因數之和之類的,課內比較少提及,多是奧數訓練才會學到。 數學上這些都是初等數論的內容,奧數範圍內是數論方面的一些基本知識。
- 而一個非零自然數的倍數的個數是無限的。
- 人類身體所能承受的以輻射場的強度與曝露時間的相乘積計算輻射劑量,因此以“輻射水平”的單位“微希沃特/小時”及“毫希沃特/年”兩種較常見。
- 24乘60的矩形被十個12乘12的正方形格子完全覆蓋,即12爲24和60的最大公因數。
- 由於24的真因數和也是過剩數因此24是一種高過剩數。
- 高合成數:24共有8個因數,任何比24小的自然數之因數數量均少於8個,因此24是一個高合成數,是第6個擁有此性質的數字,前一個是12,下一個是36 。
推而廣之,如果c是a和b的最大公因數,那麼a乘b的矩形就可以被若干個邊長爲c的正方形格子完全覆蓋。 :若將四維超球內切入這個正二十四胞體堆砌的每個超胞,則產生的結果將會是四維空間中可能的正超球體填充中最緊密的一種排佈。
24的因數: 因數
如果人體瞬間接受輻射量超過250毫希沃特,身體就會造成不可見的傷害,超過2希沃特則有致死的可能,超過6希沃特而未經適當醫護,死亡率為百分之百。 7,1個非零自然數的正因數的個數是有限的,其中最小的是1,最大的是它本身。 而一個非零自然數的倍數的個數是無限的。 每個因子減一(包括本身,不包括1,2)得到的數都是素數:24是第6個具有此性質的數字,也是具有這樣的性質的最大的數,前一個是12。 而其餘具有此性質的數字正好都是24的因數。
5、若a是b的因數,且a是質數,則稱a是b的質因數。 1、整除:若整數a除以非零整數b,商為整數,且餘數為零, 我們就說a能被b整除(或說b能整除a),記作b|a。 5,若a是b的因數,且a是質數,則稱a是b的質因數。 24的因數 1,整除:若整數a除以非零整數b,商爲整數,且餘數爲零, 我們就說a能被b整除(或說b能整除a),記作b|a。 任何連續4個整數的乘積都可以被24整除。