arcs2025介紹!專家建議咁做…

ARCS模型是包含注意、關聯、信心和滿意四個層次的一個教學設計模型。 該模型關注的是如何通過教學設計來調動學生的學習動機問題。 arcs arcs 關聯動機模型,是指教學要與學生的知識背景、個人需求和生活經驗聯繫起來。 因爲與自己切身相關的事物,更容易引發關注。

mk/tp92rijS2qV3M2VvTN2VcEt98uImC6X0N5A3lsJ3BPMc8Y5iv7u6G1ywkrf0TqFpCeZUu1vpA/WU4rAjcdhdZIYN1RvgbbP66T+0n3afA22f18n9pPu1YXmX47qmH2lNuJ6pWCkj6wedfXbbHfLyh12z2W4TkMf5VUaK46lv/AGikHHUda8hpJsAmVo3VT+BtsH9PJ/aT7tPgbbf6+Sf1p92rdcNOaitURufdtPXSDGeKUtPSobjTbhUnckJUoAHKQSMHmBmseTijmluhFigDHC4WB+Blt/rpP7Sfdp8DLZ/XSf2k+7Wd3nyqQSetLBZyNWB+Blt+kSP70/wp8DbZ/XSf2k/wrPZOKkcxSyZW8lgPgbbP66V+2n3afAy2f18n9pPu1nwc0pYJkavhsXDyy3WauO9KmJSlouZStOeqR+b7azvxPab+n3L7RHuV9ej+V2dH+rH7yKuHjUBiNTLDNlY6wXZBBG9lyFRfid039PuX2iPcp8Tum/p9y+0R7lXulcPbqj7lv7NF9qonxO6b+n3L7RHuU+J3Tf0+5faI9yr3Snbqj7k7NF9qonxO6b+n3L7RHuU+J3Tf0+5faI9yr3Snbqj7k7NF9qonxO6b+n3L7RHuU+J3Tf0+5faI9yr3Snbqj7k7NF9qonxO6b+n3L7RHuUq90p26o+5OzRfalKUrkW9KUpREpSlESlKURKUpQoqLqb58k/Uj7grHVktSkfhqT9SPuCsbnFXGl8FvooqX5ylKUzmt68JQjyoeYqByHOsopGfGuhew5rzhXojjOmNxh0xFvNk1DENqaRKjNvsMyFuoU24tLmR+QUggZyoVzyRnxqFbkYWgkKTzBHUGvD8+U5DY8DyKANcbP1C92bhZuzHpy6QbRZeGuhV3C+gxDHECNFcdiO8nFjegd61gjcE5BBqhdpDRXZ3s+jr7oSx8K9ORLzdLe5E9Pt1rjsqt/fAICy4kBQ9VRJCfyc+eK+/gjqHs+Wrh7o+56t1vZJurIlnjFNxnd3+EIJcaQpxhDwSFpR3hUSjO0knIOTWvtdr05N1Rcoun7wq722S0iQicp3eZaXUneoKAH5YWk/7P91F6T9IsQw+iD4ngk2DrOvl521vrz4KbwjA4p57TxkNAuO6QHe/l+V9XZp4dcA+GnAGxp1do6zX3XLFli3W8264MtvSY5kqyNqXAQhG5WNyRz2jJOBXw9qrR/Zs132fNZTrJpezab1ra9MStSRYcNhMeQtmMsneoNpCXUbmyndzKdx6ZOdj6N1XwSumhY9i4gz4ti1AxBasku6uMhlya2wQpH40DasdFBCiSjerGNxy4iXTgVdOFV10TpZ+JqGa/aplpTcGmt62G5KFBaFPhIGFbie7B59ccgakoseqOtFU+ZvUdWNA7XN6b2sud+D90tETuszb2Nsvrsq32a9AdlTidwc0nqa88OrQi5yYESE+7cPUcmS0x07yjC8KKiFEAYPI8qvNo4fdkziA73s7hpbIirZ6PaY67h+KC0+sGW2ylwg/JVgHmeQ61o3+Tw1Vw0a4Is2HiVMtka56avb7cSVMIQYrqVrAUh447tRSvaeY3JJScg4roK0Ds9aViTw/xAsuoHHpKLhHaEpp56M8yFlDjIaJUlSQVeunGElWcAmukY3igkhc2UZBnzd6xFvltquY4VTFsh6olxy5bA2/8r6LkDSB4G3Ht/X2w/F+VaLGiUWlFrWwlSG5KpMN0OlO/wCTnJzkqyrpXX8/gn2YmktuWjg5bL0j0pcSUbahK0wnEYKg+S4kIIznB54rjPs02fS2oO19xS1Dq3UbNkt1kjQ0CY+8htG4qZAaK1kD1i19fKu1NTTOCMvTM/T+ktbWJqJcZi7jOtdtuyUqlOqUlbjjSm1hyM4CkuhxkpIWCvrknFJjleYHSyy5QWsIsRe5F36XXqqwuHO1sUZdqRsbWBsOC4U/lOOC/CXhnK0SeHbJi3u8uyUrgGWt7u4oSnaU7yVpQXFeqkkpBUvbjJFdWaG7OvZq4W8BdP3fXGkbLeC9DhsKenvIb3Sn9qNjPeLShDpWtWVAhalbiT0AofHPgH2btYRdPa3sPEh2ff8AQkYM222h+O4/ObbeSpiM+AhLhS0srI3et+MXuJrdDMzs8M2CxWC962sTUyM9Hlusy3ES2m5re1ZVsd3BhXeIBynZkpwc9K6JMdkFTkieLZbl2YA3vYW4H9V5ZhD3wDNE4kHbKdtyTxXIv8pZpjgXw84XaM0fw401EsOop96YuElhMd0SZMFmHIb7x15ee9KXHmwVFSiSsnJ5mvPLnkc69VP5Qy/aC4823hrwl0VcGLnf52qUyk3KMnciNbUR3USlpcHJQCnGDgcipI8RXEXa14D8POA+qLBa+G/EZ/WNuvEB2S7Lc7r8S827tLeWhgnapJOefOpKOtbO/I+TM/ffgtHZJIGXyFo9P7ZaE7zas7j6or+oA61/MtblZPSv2BtPsreL21XhfrApTIpWUTGKGlQqsos3o7ndXT/q5+8mrh41UNIfOrvtjq+8mrf41WMV+o9l303hhTSlKjV0pSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpShRUXU3z5J+pH3BWNPPoayWpvnuT9SPuCsdgCrjS+C30UVL85TwxUDlyqSM0wBW9eFGDyUAcHxxyqNwzjxrq3sO9maz9o5vVkCTfLPb51nXEW0Z9sExTiHA5uCE94gpwUpyRnw6V049/JdW/vfRXtWaLkOLGUsKssiOpY/2mpKVj6wa3tjiLbvka08jdc76gsdlDSV5blQ6p5ge2hBzgpJHjy6fXXZdl7Ds3R/amhcGdZyYcaz3u1ypNquk5lE2N3qEFQQpOWwtWQcBW0kKB2nBNdGSv5MXTkJpK5mvdHsoWrakuaRQjJ8v85H/1XiMQOBLpQLH2Xt8rmWs0m/Jc6dkvj3eNRQPix1TfX3p9ua3Wpxx5RU7FSnm0STzUjHL+zyx6pzuu9SZUS7t3SRKfdUQpSO8WVhSQn8Y1knl6iA4B5tq8znRva87IF+7LEOxcW9J3S3pYbuSIqV20PtgPlK3EOFp5bhbzsUhQSsoIKAEpO7d2LoDgRaONWkouutKdpec5EnNtSJEW1x7ZLj299SA4qMFd2Skt7sYUdwAGefOvnOMdBPiOIvmiqGtYRcghxF/K36qz0fSbs1I1kkZc4bWtt7/otetzZtou3exJLjUe5tht0tOFP41IJQeXUKTvHPoUpHjWTelS5W1MuU65sBSncsq258snlWw7B2THJi2ZVo7Sc+7Qrc80tyMmz255vagg92SlPq5AIyOn6q1vpePO1M9boEdhBnTXER1No5oDxVsUB/ZCs8/IZqgdJOjUuCiFkc4lEmgy34HTeysmEY1HiJkLoyzLrr/wtJcCFSNKcTuJWlo7xYKLu7OSE8klqQltQBHQjCU5FbmvM6QLLPYZIZaeZWHA0lLe84PytqRnmByP/itvt9iiyWnWt24gwdfzn58yKtD1vVbYiUODuVIZSXEoDmEHaUqzk7ACSMitaWmDAlXyPbb/ADG7fEdeTHkSHduxnd6m5QX6vIkHB5EgZrt6UYZU0NdTh8ukoaDa4AIsHX9N1pwfEYqqmlDGG7LnhqDqFz5wGmOzOKHFOeEIUxLvciM4hbSVoWIy0obCgoEEDeoj2gVup94NS4UaFEhMLWpZUpmEyhZbCCCApKQQDkDkeeceNbTsfYectzT9x0rx3lx03VxUxx9jTNqUH1uHcXMhr1iTzz41lZHZbvOplvSYXEB7S78GfLjoUzZ40v0lhRb2f5cK2AFB5J65GScCrFjHQ6sqa+Ps9SOre21+9ZuVoGotx4WUTQdJYIaVwkjOZpvbTW54ei0dfLvLEwR4uBLdYCFOISEuOKWShsLUPWWkBK1kEnAbzjkK+d3VY05Yrpqa53V9u0wWFL3LcP4xpoHLhGcKKjnHmAD44q+a54H3HhOuO9qHjFG1LLvM1mOzGdscSA9FbIPeydzRyoJaQsDI25wPHFWa/diiDqnT7rVy4+XCRYV7Hyl2yWpcYIbUFJJPdAEJKR1OOXOuSm6EyyVLqWWrbZmXMe9qDrppw89lvm6TxthbO2F13Xttw2vzXJ+iLpIsMS7cd+IqhGvV+bEptt/KlW2zNFJaZAyCCQUchgla08uRA5I4ucULtxa1jM1NPaTGiqedMCE0AERmVK3YwBzUeRUrnkgeAFelyuym7x1TfbW3xRtkSHCvDrAju2SNNRNjs4THeACxsBG5eE+rlzwwANA9qPsRQOF9o03p/TOp7DedT6jvzEJtiHZ2re7Ej9w+tx50IcUS36iOZAxjkckVcujuGU9HDJik07S48BezWt0A1HL+6qExLEpKiVtCxhA56ak89ea4aOQCrHIDrTJBCSOfT6q9QdM/yadg1DYbdebNrbS4jvRGSEO6aRJcB2JyVuB4blE5J5fldKsL/wDJoaTmx4bFo1DowOwo4ZuClaaU6XpG9ZK8CQO79Utjb5oJ8TVwh7PMxsjZm2dtv/CgXzOjcWFh0Xk8SM4qRyFbp7XvCm28E+Mr3D21yrbITEtkWQ89b43o7Li3StWQ3vXtISUAjdz255ZrS1aza+huFuabgFKHoaUPSi9LOaQ+dHfZHV95NW7xqoaPP86vf7hX301b/Gqxiv1Hsu+m8MKaUpUaulKUpREpSlESlKURKUpREpSlESlKURKUpREpSlESlKjxodlhUfUuPw1Jz5I+4KxXMeJrKal+e5I9iPuisbjnmrjS+C30UVJ85UjpSlDW9eV1L/Jz8MOJOtO0PadW6QaejWLTbcxN9uaJKW0xkvwZLbCVIDiXHdz3dkBGcbckpxmvS13hbxNXrSwOXe9Sbu5GtRiytQkoYKndro7zu2igpV6yOScH+0flV5S9lftK3DgFc7nb27ldbdbdQrY9Lm25xneyWwsJKm3Gl70+uSdpBHgFdK71sPGzW2oLVGvNl4rXu52+Wne2+05DUhSfrTGyMHkRkEc/KqZ0nxKjoyyOta5rQ4OBA0JbrYmx/KnMKw2apBkp3tuQQQb3F1leLnCTV2uLtbeHl71E7qjVEa3srF5QhiM+mU2pam5CEpSltCkcjjByAQd2Tnel70prWzWq9vXG4/CxE2YJduRJiMrRYkpb9YhCyFPI3DJTvB9ZQTsGAObPhRqG1SpF+tM6ULipKwJCZAD/ADPrHvFheVEZ5qBHM8x1H2McUNdzojqk611BLCg4yqNLlMhpasYLboDAIHPBwc4PInlVQw/pTQxdomkJBkeSAbEAC1tCDvxupmpwCeURRNcO4ORueavPaE4TcUOJ3CNWn+Ixstxjx4cn0t+2OlDZ2p3tyi2tCChadowlJUMgHlkiqv2JeynxI4QcN20av1C3AnHUSr2zEtkxS2Z0VUZLYakqSEHaflbASnclBUFYxVVgcR9WTRKs72qb0hl1t5luE9PU9HKlNkLbcSobsp37tu4pKSlSeXqhZuIWrbo7Lakas1TClR3PXix73IbbbSfkhCQrCUgEDA5cgRyIqRh6XUdLPLL3i1+UkcnbXGm1lzO6OyyxMhLxpsbfg6rqPSuj9aS9R6lvl0Q9o2JcGIceNFtz0V8qLSXN7hKm1JSPXTgYByFZzyA032fOEWodZWCdqK7SUWdm4R5kSO/G2uOx5KgWXSlC0lOEr70jIOQU9M1VG9VasQ4lwa61acKCtq79JUFY8CN3j41hrHrO/vpchM6j1DaFsgOmJbrw+xHRvKtxCUqxnvUvDkOiQfGo49IMFmfHMWOPVku15k3HC3Pay624LWRh0TZQM4A2OwHrddO6g4TS9Zaei6OfN7sUq3CMBqePdFmZJ9HIwkuofEnDgzuyvdgn1snNas4t8GtTwtQpj2hhl2PfJjLMN1TwGZKvXUk7iVAZQsgnPIgZJzVKGvdZqdFma1xqlCI6O/S7+GnlOObyQpKlE8wnYnA/tmvlna+1ZClRGpeprzcSHEyWVTbg46phwOIZCmzn1TiQo580prOMdIMJxqBsD8xcDmB0HqNByulDgtThzzLHINRa1j7cV0dA4YX7TNuYlP31+SxKZt7FxhOPZjwktR3GXVsJJ7s57xKlEp3KKBkqASkf00jw21XoliLoRniDetRRe9kTXbpdJCnpsVK21pQFFaykjerKAhCEgIIKeWTzzL4gazYjGK5q+/y2pahGW3LuK3W1JWdp3AjPQ+fhU2zi9rm/Sn7inUNxipcZZJkx5JStYKnVoaOQeSUOoVjwLmB0qRj6YYfHHkiDgwZfXu/zYX91xP6N1DpBd4JN+HNZftA8KdVWHVOm7vcZ0m8WKDa4Vnbnypney5U30hxWxZcWXFKWruOZJB5jIrbcngxrd7QCbYzqd9p78ATLa9Y0OgRJDzq1LQtSuYBBOMpSDgnmRyrnvUHEXVN4kx7dKvFzui4Elt1gSpQcS3K2q9bkB8htSlnn0KAOZFfbduI+sYEVT6tc6oK1ktst/hpady8EgfJ8gSfIAnoK4I8fwpldLVODv8otb134cSus4NUvp2QZwAw32OvJW/gvww1RKvd6t8S4PWqVb25ltm3SM4krjT1Ix6gSsElJKSkA7QEgE+B/u/2S71qDjtc9Z6xlSrmi72eJEnagS4y064hhlDfcttp5oU6tJU4QlKcYCSDVH0/rnWMREqXZb9dLM1PmPTVpiuIBkuOncp1fetrVlSiojnnBGeuB907i3xFhNJK+IOqFqdylptt6JudUBnaMx8e0knAHM14w7G8HpqP4fK5xBcXEc/I6bbL3VYRW1E/ag9oNrbEW8/VXew2i+ac4jXnhpomRPcjNpR3iWZZYcjowAiSShSAQhSidmQFgFOK+PjzfeNHZo7OV/vtvkP69vbq1v3K+iJCgNw21EJL7rTYbKhzCcJ7xZ5ZI5qGvrDrvU6rjN1Nb7rLt8q4obVKuUd1ovynAlIUcraKVIwlI37Ek4GAAOeN1trfUnEDTFz0ZrDWd9u2nL2wYcph1yOBM9ZJCGw2wlauhO5KgBgYyM46cG6Q4bQRvp3lxGYkC2jQeA0uL+v6LRW4HU1bxMHNBsL76kcSvOSfpXipq+1XLizcdPagu1sdeW5Pvy4ji4/eZAVudxtGCQMZAHIYHSql44rt7jZ2lNPWDgjdeBGmb5BTFnsO29yyW6Kl0RSlSNhW+MIQAE4UlBUQQEgHKlDiBROen66+lYZWGupmzFhZfgVWKyn7NKWZw70/35qaHpQHND0qQXKs3o/51d/4dX3kVb/GqhpAj8LPe2Oo/9Sat/jVYxX6j2XfTeGFNKUqNXSlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJUeNTUeNDssclRtSfPkn/AJPuCsdWR1L8+SceSPuCsdVxpfBb6KKk+cpQk+VKg58K3ryhz06VeuFvGPV/CW5CTYpPfQHVhcu3vE9y/wCZ/sLwOShz88jlVFHPrUmueqpIK6IwVDQ5p4FbYZpKd4kjNivRrhdxj0dxbgKl6flJansJC5dufWO/ZJ6HH5Sc5G4ZH1HlVrmRHQ6blbUoD4SA6hRwl9KeiVeR64V4e0ZFeY1nvd309dGb3ZLlIgTo5CmpDC8LSfZ5jzB5eddg8Ee1badW+jaY4hGPbrwoJbZnEbI0pfQbs8m1nlyztJ6YyBXxrpH0GnwwuqcO78fFvEfyPyFecL6QR1YEFTo7geC3VOjN3VlNytydshjCHGgdriSg5A/suJ3Ep8CCR0Vmsc689MQ1qCAgC4QE/jm0dJDJzkjxHNPQ8wUqSRuAKbBLiPlaZ9sSlMkD19x9R9H5qsdPNJ6j2jIOAuj7UbdqG2ju3mVkSo5ylaFjAVlI65xg8sEbVpPIFVOp39ZZv99D5Hgp2Rthm/vqFZbfcYlyhonRXE906N3gMHOCD7QQQfaKw7QmDUgZgQnX0uhTiFNjKfxgG9J/2VNtqyf63HnVm4V8MLjqWQ9f5C3INkmYeREWkJWHee7b4BJ9mQcDHIgnetp0barc2lqJBbbKeWQnx/X9VTmH9G5ZSS7Rh/VRVbjUcFmt1cP0WjGNEannXBM1CW2AGFIUg5J5qBB5fVX8rnwy1VKfjykyY4DWEkKBz/lWnOX2VdHt2thkY2JJxjkPCoVbmFj5AGPZmrBH0apo7cVDPx2d2w0XLerdN6yZjtsJt5dQFqK3GlcxlCkA468isK/5a+SFcmbZbn35kN2KoKW+WSkhRSeSEhOOZICQB58hXT8nTcJzJLaSFZFVTWnDaFeYBYwkOIwptwAFTauoUPaDzrhq+jkZjyxaDddVNjhz/wCQbrR+n2VqBussJSEhSU4UMFRJLqyfaohI/soB/KwPlaCtS3RTrmUQ44CAM5KkkBWD5bvVUfHaEj8pQH41XBvNgda04lsiKshHfZwEtjoDnwz1H5WNvLcSPtXdbbY7ahprc4oghDaRuUo9SokDxPMnnknlkkA1Woglgee73jt5DmrBDIyVtwe7x9V9tzuTFpYS68QMhWxG4JzgZJyeSQAMknkAOdYRET0tC7vqHCW3kd2Gi2sqdCjybCCN2w8hs27lkesOiB/NIU27+E70vvZzgCm4pWEoaSOYU4eiUjA6kjP5yiK1VxW7Q2ntEOLiMqVdL6dxEZClNhhChySs/wBCPMf5UjrsyK6MNwqoq5OppW5nHcj+/la6qsjgbnldYLY2s9a2iw22VdNTzIsGBG2oWy4s7d5GQlwpyXFkbcMIySOauSvV5R4sdpS/aveftOkHZFrtbiCy9JKgmVLT4jI5Mtn8xHP85R6DWesddan13cjcdSXIvlO4MsI9VmOk9UtoHJI9vU+JJ51XwkDp4V9cwDoZTYYBLUgPeP0H8lUvEsckqiWQ91v5KgJChg+BzX6oBilXYCwsFAEk7pih6UoelZRZrSHzs7/w6h/1Jq4eNVDSA/nV4/8AsK+8mrf41WMV+oPou+m8MKaUpUaulKUpREpSlESlKURKUpREpSlESlKURKUpREpSlESlKUKwqNqTH4ck/Uj7grGHpWS1KcXyTy/M+4Kx1XGl8BvooqT5yg6UqMiprevKgE+VTSlETkajGRg0AxU/qpuEW9ODHaj1BoBLGnNYGRedPJIShzIMqGk9dpPNxI/NJyB0OMJrr7he3Z+L2p4d5sk1EmztYU88yRskI6htQPjnnz9YcwcZUK8zCCRgE5r047FFpg6c4cQWWGih15IkOqAHrqVnr9VUPHOjtA2obWxtyuJ1A2Psp+jxiobC6Am44X3C6wgQmIzSGGG0NpQAlISMAAeVZJtO0YNYJu9w4LK3pT7TTTKe8dcWrCG0+JUo8gK1jqntfcCtKuqYk6v9OeT+Tb2FPgn2LHqH++kTC8d0Lge7mt0qHrdK/BKRnnVE4d8Z9BcVIz8nRl79LMYJL7K21NutBXQqSrng46jNWtctOwqC+VYe7IbEarIF19a1MgZUK+d9LSkEKUCCP760TxI7XXCfQNzk2N6VPu8+KtTLrVtQ2tDbmOaVLUpI5dDjODy61gtIdtDhjqKVFt9/VI0vMmrSiMqc4lyO5uVgEujHd8/FaQOfWsOhmLc2U2WRYFbP4iaWhXmE42pIBGSk9MH2Y51ylebw1w9ukx+/T0hTOVNSpJBQ02OQ2DmMgDx5DnyUpRCuvptxbnIW04NxGAR/2/VXE/a+0kw/bVyGHVJXDWt1KCMerlRxjxIwOfsqKbQw104hk0B0UnDVy0zC5i0txP7Sd2vapFo0Qt+BDWpSV3BZxJe6grT12bvzj6+0gAIGU1ovJVlaipSiSSVHJJ9pNftXMHFfgZBwa+h4fh1NhsfV0zbefE+qg6mqlq3Z5XIOpyKbeeamlSC5lCadDzqaYzRFB5jlTPKpxivz50RZzR/zq7/w6vvpq4eNVDSBzdXPZHV95NW/xqs4r9R7LvpvDCmlKVGrpSlKURKUpREpSlESlKURKUpREpSlESlKURKUpREpSo8aHZYVG1Mf57k8vBH3BWOBzWR1N8+SfqR9wVjsYq40vgt9FFyfOVG321NKVvXhKHPhSlEUAk9amlCfbWUUpJSoEHHMc67z7N3EJbGlYMeItwuPhEdplPNxa09cf3GuCFED5ROPZXSfZA1FfW9Zuw40T0iHGtzi1rKeUclxsJXnzKsIx47zUPi8XW09+Wq6Kc96yt/a64zahuOo3eGse5LbtdpSn8INNLwh6cRuIWR8sNg7QDy3BR5Vy1Iubyidrh2+H/iti8fXH4PEbVdvlKPfIvczcpScFaVPKUkkHplKgf11qkLDziGGxg7gBtrbRxMZE2w4LErjmstp8G+LepuHurYF8sspaZDS9p29HEH5Ta/ApPjy9vUA16NcQOLHpXZ6u/EexSFMuLsi5Uf1huZdKduM+aVEp+sVwpwz7Pd0uOkW9X366xbLGnSEs21LjbkiRNWVhH4ploKWpIUTlWMAAqOEgqrsO+aFhwuz9J0HFmpcjJs60l1WEhZVlxS+XTK1E+XhmoHFJIHStLOdiumFpIN15iCfMclKeeUpXeEk5OefjX90XN1x9tcl8qQCE8/LPSrpxb4Paj4XXH0G8MABaUuR3217232yAdyVDkRk4PtrW7zbyY6FbRirLG9krQ9llxuzDddz9nDipqLWtqh6eF1it3yxtpYjvvJO2bbz6pZdUOikkDar2jIOCTge0ZrRN9ty3lKcBTFcb7pwEFrcVcicnJSVEHw9X21rvseTXLfrJ59bK3d0NaW20jJUv5SQPAfIr7+0rb5yLpK1bBcjN2W+yVliMHR3zDyUjv0rR4fjQo5HUKTjHSq8aaMYlkGnFdwe4QXXNLp9ZWT1Jr+eOea/TxGeXP21+atbRoo0pSlKyiUJPhQ1AB8TRFIz41GOpoOlSelEWa0f87Pf8Or76auHjVQ0gB+FXv8AcK+8mrf41WcV+o9l303hhTSlKjV0pSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiVHjU1HjQ7LHEKjam+fJP1I+4Kxoz41ktS875J/5PuCsaTjwq40vgt9FFSfOVJGaAYGKUrevKHpQdKHlQc6IoHLrQihHPNfthl+S+iNHaU666oIQhAypSicAAeZJxQmwugF9Av5FKlEJSgqKuQAGSf1V112TdQPwrBdNEX5hphNywqC6EAOIeT63drUBuTkp3JBPUEcs4r4NE9kGKqyIfvGpCNTPpS9DYQdsZl3OQlRAUpeMYJGAD0z4/3sL2geBOpZFv4iNahYlOM963JhR2pUV8oIBIRkKBwRhXIpV9eRUZscocVL6SmdmcOHPzHMKX+G1NGBNK2wWG7UWhZEq6HXbeXF3BlJn92n1EvNgJK8j89ISevXd7K5ybjlLiSnOUkHI+ut9yu0lZJC5VphaXuTdod71lLc65JkuusnKcL9Tkog/nKCfDdjNWyL2SLhxG0DbeIHB+6xJCZ+9TtvlvbXGilZThC9u1R5dDtx5nwkKaodRxiOrFguR7A85mLo7QGoOH2ueF2iHF8QXLIm3xWEvRId0bjKceS2EKaeB9cjcCRgg5IINWWJLvTs1rR0iJCXAcnyYZeiyPxrUNDKVtnwyokhJIyU8hjqoch6S4Q8TeBWoka11Bw+j3mJam1vuszHkloHbjfkBXyeZBKSBjOM4r69O9s+ZbOIr9+1lpgOWtb6nWY0IIBhAoKcthQAWs8ypZIUdx6D1TDy0Lpi50DswW9sgbbMuk+0bweY1/wxVAsluVKvNkbDkAIQkOLBKe9aAACfWSnO0Ac0pwB0PnHcdNPNyfQ1JcaU04ptaFDBSsciCPDB8K9QrXxBuGsNGs6p0FaGVsXSKJVuXcH0tpBUklO5KAo8jyIJHQ864m17w2Y4UXyDE1nfpKpkhkTnn48USQpxSvXCAop3nPPccfVzxW/Bqp0QMMm/AfusTxA94LJdnS0KtuooUViMsFtfpsl04wlDbS0hA/53Mk+wVTuN+opWqpyoFvOWLeXUJaAxvWpZU6r28yEj2AVsjSnELhZbIMhGn9QuQXVuoekruEdbbj6EjmEJbCklQ/JQVAEnw61QYFgf4l6jfc07YJtn04HXe/uUpRcWAV5BIHqqWfVG1PIdSa3iRsVQ6pqe6ANz/f2QMdK0RQ948hutBOuITuWpQSOuTyxX4bcDqEuIOUq5g461tO08HGbNqi9O64AuEazK7q3Q2coTPd9VQcOcYQoEAf8AN5VWNfWNqxy4rRdadmykOzJRZTtaClqyltHsTg+A5FJ8amIMRhnk6uM381xy008QzvYQOZBVWpUdCQQf1ipqQWlTUUJ54pREoehpSiLN6RP86uDyjq+8mrf41T9H87q6f9WV99P8KuHjVZxX6j2XfTeGFNKUqNXSlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJTFKUKKi6l5XyT/AMn3BWMPWsnqb58k/Uj7grHVcaXwW+iipfnKDPjUZ54qaeNb14Q86g8seXj9VSRmt89nTReh3rLeNd6+EJEa3qAiLlJJUpxOFYabUdjhPMYUk+zBrDnZRdYJVI4D8E9T9oHiAzoDTEyNBcEdydNmyEFTcSKhSUrdKQQVHK0gJyMk9R1rq/XHY84C8PItqu+nuIupHLppp1uXdZDTzLq1p9ZSXu4KQWAhSN/IKyhCsg/KH28A7zqJ+7cYdNabtcWLNuFjt0iFLaeZLuSHQGfSAruyARjG7AVvBJ5Yp6vhCi26htl5Qth2VGceU08hLc0SEK3NpKFAOZ3YSQoZCVKxjJquYviEkMnUt2srx0YwCHEoTUyu1B24+q263quJbYERZbmpfeShaZHdgokI57VNjHMFPtGB59K0Xr7VnDjV+pjZlXQPXFM1EZUVTuXI/MBalpwMpIX5AHHszWY4vW3ia7w9vkPQ0GYw1Ettse1WgFLDTb6EIfW60dwVuDXdBaUAK5ew1yXpBN4maxht6Jt7zstS0Lecc3OlJ3hSnVKwNoyMAnPXqSarWFdFoaZxrRJa2395LpxLEhTzdkyZmmwJ5+n9ssrqHQ0o6yXprTTTslbr4RGGCcJWrCCrp5jJr0u4IcNXeFHD62Wi3PuOuOR0LmtFwlCnykbnAOgJP1VyPofSsq48XpTLr6mVsXFcdhRRlTKCct8z8rG1PI8//Pe9occt9rZYlILqW2kncMbgOeQUn/8AHp1qTxarMoZFfYKqxRZCTZay7RumdTa04V3u06dSpiZ3YWpCm8qkNtqDhbTg+qVFKeZzkAjAzXDi+zbxNlogquOl1tvXLnH/ABgCgSeYI9ievl416Y3K96Ytim4991BbbY6+hXdomyUMKdA6lIWRkc8cqL9FDrQIaLvcqLKuWQ36u5Q/s4xz9tclLiE1EyzW7rL4mym5K1x2dOGt+4b8MrZpLVkxuVLjKcWO6JKGULWVd2CeZwT5YycV/TjZwh0ZxKsEhN5gNN3CI0pMKelA71lWOQz4pJ6j/wA1Z77xH0RpR22M6k1LFjKvTiUQAMqMjdjBQEgkjKk8xy59RXw8WZV8tun3pdkWyVtpJWh1QCcbTkqJ/JB25/X5VxiSQzdcNCStwaLZSvPi2cOHH9fK0eNrgM9uJvSMgJU4AVZ8gjJ/VXao0lKstlt1oscJllqOsR2WVICglOwYAA5+325PnXMPDBmbD1RJu8iKme7attxeTnDzrSVZeHXkvCSPPpW7Hu0zoxKJAhSZzCnMNlmQ04wvIT8jKk5cGQBlJI5DrUb0yFdXTxMhGZrR7ZjzVg6Lw5Q8xjvX/C1h2ono2g34F4lsqEmTlLzLLI2ISHOWDnBUPEfV51pmz3/RmoXmmbj6FJCEr2JcQFqAIGRtPTon+6s/xxcvnEvU34W9Pebisxwy1CaUXW0pGDu255EqG48ufIcgAKpce0ahu09jWWqJAjXAhESJHTHS2460kYCinO5PX5R58sdc1PYVSMpcPZ1r/wDIBw/ZWPr69lQ2ldEHR+eo9f8AhVfWWlpul7mpl2KtuI+VLjFQJ9TwGfMZHL6udYDmE9edds6H0XobiHw/vmk75CtcW8OyI7sbUd0kd2iOXMbo61KKQkEJUAN2SVnHrJTXIGs7BH0zqSbYos6LMbivKa7+M6HGlYJGUqHVPLIPkRVxw6sbVRDXUaFfNscohQV0kIFhfQeR1WFHPrU0HKlSCh0pUCpPSiys3o/ldnR/qyvvIq3+NVDSHzq9/uFfeTVv8arOK/Uey76bwwppSlRq6UpSlESlKURKUpREpSlESlKURKUpREpSlESlKURKUqKFFRtTH+fJPL8z7grHVkdS/Pknl4I+4Kx1XGl8FvooqT5ypxToaj9dQcit68KT0Nbb4JcOL9xckKsc69SLZpu2NKU5JS2CSpRH4pJ6ZOST1OB06VqM+ZOPbXTfZr1Xc9H6MnIuti2WouqmNSy5zWFAJKS1jKvYR5+PKoXpBVVNJQOfSfPpb/a66EQOqGtqfkvqtkad4a3Ps83Z2Vw2vMi4229RQ3Nj3FWG1KAJZdC2kpWnBKhtHIhSgeYTjb2r7zM+BN54itvJsepINkbkB+LbhIWSlKiGCFjYlsrSAXEJCtqs+qASdbah4iw74FTbZHWYcd1ZSypwlUp5jG9jdtwHRtP4sgZPLlVt4XTdR3fhjNsOrbXKhsXZ2QkokvK9LfhukH8bggt5GUlHUJz+cQPnEONVdFC2oxM3AO2mY/yrk4Md/wBNhzrE72Og2Xxad4qu8VdNTrRoSxXbTiLiVI1BdZkZGx0lASpqGdygUqA2lXygnHME18E3S+mdEWRvTOlLWh24OgJ3KJW4rGVJU4s+srnnanw5nASFEW+7XGLp+G3arRHZbWhCEtttoAbjoJ2pOxOOZIKUIHylDGQMqHwwrd8HoS7lcWw/dZx2NNrXlSnF89m7qSQnKlAYwjAASkAV+uxuevl6/Vsd+6y+/mfJTMcIjjEZsXDd1tV+OHen7E7qI3tEdX4TS6hc3CsgOpAAVz6bhn6+fSt5XRTj0XdDeXEU4ppptSWC82CDkhaMch7cjHmBWg9PsK0lr62d5K792+OFMwDKUunkO8Cc8kpKkpA5/KGeZJrpNhJSAhvltP8A91ZKGq7VEH3uqriFP2aUgLQfaD4MPcbtS2tM7VFrtvwdtr0pADBUtxa3U5SvPyUYR7eZ6VuMNJXNsgkM28Sza3ozYS8o7m/xRWB6vMeqn/vz8cq7BaWXO8iMud6Nq97YVvT5HPUda+N20sekNzRAjtvMJUhpwIwpCVY3BPPkDtGR7BUjLO98YjdsFHBoBuFoXjnp25T7Rw1Gnmm0Owb4zHjPQWg8/EbSggrTuBCkJDacjHMhNbR1RGbFjkwbrMl3R+QEqQ26lIcc2gk+qnCUp68gKtUKCzFaKGEtMtjOEMoCACTkkY9tfl23w31FbiSVhOFLCfWwDnFapZyWBp4LaxmunFcp6fsFw0pAvF4EULv1+lSSllSB6sdKsE9OpGQkchny619Nw0FZNW2gXOzMhi5NNkOMcgUq/s55c8ewHzScmrXbC9N1PNdmtqSlalOQMnowDjYR5g/3hQ8QcfTebTKgTDfrEO6eHOQ0nOHAeRVtHyvDcOp+UPWGFVDEMYklq7MdZw2PA+RVxw6B1CwSRm37rS509KkOfgaRo5154rQ0qRFbw0SSE7lFWCgJB+QUgjnnngHJcVdIaM0Lq9MCxvuO29t11luY/HDi0yGW0qfb5EbhlSMHHMkjlW1X4Fu1ZFVMh4jzS2gLBVlJ5bkbsclDxQ4OeDyOCoH43dExtWwxZZt3S1PjNl/upobHcyhlIkNrbQCsLBDasJVnCDtBFWDC8ZirGmCTuyDmptmJyMmbI893jbb/AOqg2bTLXH/g3qLgtZrZAtl6izIN2gXOYX2kKJkBLwe2Ahf4ncEJwQD+bjcORuKXDPUXCDXVz4f6mMdyZbHEp9Ii7zHkJU2lxK21KAJG1ac8uSgoHmK7x0/Fhdn+x3xvUepI5kPrNyQ4046suFrKVMbtqe8OBy5HmrAHq89L9oqHqbinw7PEy6SWZkSxlbNvQ2yI5bjKdA34BBOdhJCk55p5+AveE1DqZojeND+6pPSSlirqiSppztuuSqmgpVmVJ4KCOeak9KUrCLN6QH87Pf7hX3k1b/GqhpA/zs8P9XUf+pFW/wAarOK/Uey76bwwppSlRq6UpSlESlKURKUpREpSlESlKURKUpREpSlESlKURKjxqajxodljiFRtTfPkn6kfcFY1VZLUvz3J+pH3BWOIzVxpfBb6KKk+cqOZAwake00ANQfI/XW9ebXQEeNbf0PrO9aluAsmlrJJvV+aaEO1Qk+q1EaDQBkuq6JCSpCQT0xjxxWK4PcCdWcWppcjNm3WRleH7m+2dufFDQ/pFY/UPEjpXcPD3hlpDhhZ02nSlsSyFJT6RJX6z8lYHynFeJ68hyHPAA5VQ+lnSihw5vUN78o4DYHz/jdTmF4DNXkSvOVnPifRV3glwlncONLCBqm+m/XeXKXcpKlgFliSs5V3QIyefVRxk88DpV2vl6at7TjDDrHpCWe9Wp0/i4zfMd64BzKeR2p5FZSUgjmU/wBLpdfRf/RxC0qYptTo70kIYQOrrhGMJ9mQT4dCRjrHbfSyi5SCtxgK75rvEYckO+EhwezlsSAAkc+eUhPx6eplrpXVlc655f6CvkMEdIwQU4AH93U2ezJiFy/3RG1W5UhAdGHE+qEqddP5ThTkcsBKMIHQk/TBR6Q67qOfhlAQpMVDhALLHIqUrPRStoJ8khI86l7F+mKhIB9BiOf+oI5B50AEN8+qU5BVjkThOeSxXx6wujcaKphSO9Zbb7+UBjJbBAbaT4bnF4SM8sbvZnWDJPIAfmP4HL3WwFsYLjw/JWIQxI1Hel3FCSy3GSiR6w2uJVgmOj2YBW6oYBBcbHga2XYOL9vsyUQdW94w4DgyNuUH2k+H66q2nLZKtlrQJzrb06QtUia4gHaX1nKtn9hPyE55hKR40v0GALbKmy0pDUZhx1Rx+SlJJrup8VNNUiNnyjRaZ6JlVD/kGu63ZC1bpm7MNyYN2jONLHJW8f8A7xr7nJttUyVGY2EY5neAK8p+0FPuekdbQ7XZLjKguohd7IDEhTYDm9TR5JP/ALG7p+VW9uzXabhqrhfB1DebrNlPvS5WVuyFKO1LpSOefYK+iV5FBhzMQedHW09VUKemFTVupmG1r6+i7ElalsVvRuevEZCVZ6KBzj9dUSZxZtN7cMLTDynBJCk9/wBARgH1frSSR/sq8q13arFHj2KzPyCpx2DIbjuLWc4WkqYWeftKqxcaOdPXmQiPGUTDeU4htA5uspKlBpA8VJR3oAH9e37Kqk+JGsY+Nuh4Kbhw9lK5rzqr5NthdiJENzu5UdXex3PJzHRXmlQ9UjyPUEAj6oM5u4w0SkZCV7gUqOShSSUqQfaFAg+0V/ZhxLjaXWlJWhaQsKScpUkjlWNdAtFzD4B9DuJS29geq2/0SsnwCsBH17OXPIpoJlGR3zDb+FYTZpvwWOu1tcs7yr3alIZbTuW7jIDZKtylKA6tE7irxSSVj8oHJJMPULaVKK4cuIs8+8Hex1kdUq6FJBznmlQrKH1UkqORnGarVwt67HJbmwy2ywFBLTigdkfJ/wAmvH9Aonl/Vk5HLkOiGXrrAm0g2P8AorU5mTUfKeC+p9m33HT83RWpLclK50YxIklhtASpPrZLe4HaoJUVFOc+qQk4GRra+aXEWK8nV2p7bp7RTrKo0MXZ5KYc2QErw2QXEqcAUlRVzBJQrHgRtSPIhXyI7DkxE962rEiO7gltQOQf+ykqHXkRWteN3C6Tr/SSdOS9QSWWo0lEqHLPrtIdCVpSiSgfk/jVfjUgHoV5wSbtgHSd0UjaWu0HO17eajq+CR1M7swuSuE75CTbL3Ot7cmDJbjyHEJegv8AexnE7jgtLySpOMYJOcHnzr4icVm9ZaI1LoC9vaf1VbXIslk+os4U28jqFtrHqqSR4g8uhwRisJ+o/rFfaYZWTMEkbg4EaEa3XzR7HRuLHixCA5oelQfKnhW5eVnNIY/Cr3+4V95NW/xqn6O+dXf+GV95FXDxqsYr9R7LvpvDCmlKVGrpSlKURKUpREpSlESlKURKUpREpSlESlKURKUpREqPGpqPGh2WOIVG1N8+SfqR9wVjs5rI6m+fJP1I+4KxwGKuNL4LfRRUnzlDWy+zVw5b4tcb9N8OXIUCUu9Jnojs3B55qKuQ3AkPM98pkh3uw40gqCDkgEdCa1mTjpWyuzfxZt3AzjjpTizdLPIusXTj0l52HFdS266HYjzAAKuQwXQrn4Cui9uF1rcCRZem1u7L/aRtUJmDBi8GY8dhHdtssu3dtCEjkAAOQHXwr6Xuzp2nOQYh8HgUjqufeCM/s1g+DHbC4ldpziVqHUnCfSFyt1h0zpB5mPZp7zDgn3pUppSSohaEgBr1flggLUeZKQdu6h483zh5qNE3WFlfW9cbPDJs8SSVNtTVblKS2XEoJ6KBJSnknJ5JzVbxF+C0LRNU0kVi7KTkBseZ4rspm4lUO6uKZ97Xtc7eS08zwj1DftR3DQFqd0y1qptv0t9M96W5b3X2lNd9tCFJeW0krIQFHkNu4VarZ2aO0Km4wl3q58K3beJDZmIjt3ZLvcbh3gbJdI3lOcEjAOOtcvdqrtOXLhvd79d+H92lW7XGpCt5Dsd3LlsikEoSVDxz8lJGCSpRGMA+ggv+pb3J1Hp3iL6VpKzwJMdVqvDT/oi5zakkkBSVLRgKGBhaVkc1NoyMxHR6npfh0k0tKx7czi0uaNQTpYnZo2C7sVlqRUsYyZzTlaCATofO25WlE9lztAxFKj2u48KY8JtSgyhbV2cWEbspKiXhlWPlHxOfOq41wS1dc9evcPpsjS69Tw4Sbi6+G5ptK5u/LGUF0PFCGMHbu296oKxyxXQ1x1brTTVw01ZdGWqRqnR9zizUz9RvSy45bnkBwtnejep0lYCMKQhKQAS7n1Tw72huMV+0PpO8ayRq+5RbzEimNDkomrS+7OfQpLY3ggnY1vXtyfyVfkiteNT0cM9HFBRsD3uDrtaNha4JG4N/TivWGx1M0c75Z3ENBGpO52Pla3qugv8A+Ze0eE4RfOEoPPn6DdQc+X+cEV8sns4cdYkV2VrGbwvkWNhtTtyRBRdUSVRkpJcDRU6UBZSDjcNueoxyreEK+aoujE2ycQ/S7DYTbYD8K9tPdw4+6UI75KnULUlPrqwAoIUfW5EDNYO1TtYP8LNY2C1MO3u3sNXOFBu0y77n1NltQBO5BKtu4HOeeccsYqarn4ZDJ2Y0cWrSQQxtxYcgL+6jaY1j2iXr36EDVxt+pNvZeMXHi6qvHFS9SFrK0t9w0jn0AaRn9e4rP1k1112R47iuBthbaQVrflTghI5FR9LcAH/1XEuup6blrW/XBrJbXcZBSM/khxQB/uxXob2E9O36Zwesl0sNlcusmzQ7lc2oaO63SHhLf7hsFxaEc1lJwpSQQlXMVBdKcPdUYXSULBqXsH4N1NYVVMgqpql+waT+Qt4O9lHiT6UmHCuulPwE5JRKcLz8oTQVOB13GEFsHepe3kQBtBzzJ0jxBsty01r161LwmUFnuFK5AyWlpQQT+as+iD6gr212fP1JxPk8OUags8u1q1obO25+AmIyVNrnfKKNkl5haMg7SlS0lOD1IweYe0VZ9WGPpvW+ube1aLldFtM3IxmHG2o0tf8A6dZbCySUpW4wsKJwcE8q5ekmD0sVPHNSRhuUlrsoGtwNTbjcDfmvWCYjO+d0dQ8uzC4vwtwHtyVjsXAfjNebFbrroaHoN6wzIjL8Fd1u85qWUKQDhxDUdSEkEkAJJ5AV+7p2b+0g/CeaesXDiQ0ptQWzG1FPQ64MdElyJgK8iSAD4is/wl4mcSbbw+nT9G6df1U9CEIR7Pv2tobWspdAXzU2lAyolCHVepybWTith6r4qWzh3qdm8zZGpr6Ja2mrlAtq1TGLSXNoG9pLe5GCQoKcDaSlLnrbgG1TGDwYRXUUM3YoyXaG4F7jQnz15aqNr5sQpql8ZqHaaix011XOztl1Lp6PGg6rs0m23IsDvo8kI7xCkkpVkpJQoEpJCkEpUCCOuB+F6c4rXtLq9AcG7xqiIzuRIl+nQ4EfeBzbb9IWFPEdFEDaDlOSQcfXxw4uybvx9OmLtAZYs9ztDbumpqSSJnd5U8lRPRRC0LA64CgeYxW69a8ZtUQLfqfRkDTE7Sl2sMllu3XEtB2LPhrI2vsFxCQVA4StO1QSfyjkE1XD8GwukxGtq62HNDH3mi5AsSeRBNiCN991OVmI101JTwwPtI/QnT+OO65+s3DjisS1eJfBPUen7HbmZLsq6XS7QW1xm20LUppTAWXHWQpKQlQGcEEchzz9s0FxG1i0mNoTTEa5uLSVuyZ84RYcdOcDvFBK1rUohQCUIOAhRJTlO7c9p4j6m1TwHvC9SafuE25v264wnpLUVPoijsWgLUQRhvGCTjkM+Rr5+AXEA2PhC5bpViual2xuSuAVtlpMoFaiGi+rDaVJXlvcpQGEg5POpI0mAVuKU0jYGtiLCcvesTfTMSSefEBcPasUgopmOkJeHAX00HkLD+Vz3f8Asc8aeIESVpPV/DPSLdvakoxMGolfi0KwS7AIjqcbKfW3JcCQTgBJTmvLtZY75foq1LZye7UoYJTnkTjlmvbjh5C7TznARWprNdEwNaTGfTYtk1VJ/CiAdgJZ75BQ41uVuCAtbpSnaVYJUhHiMpl+O8uPJQ4h1oltxDg2qQsEhSSPAg5BHgRX0WCOliZkpI2sbybe35JVeEk0rj17y4+ag9anqKhJyKk9K3rKzWj/AJ1d/wCGV95FXDxqn6P+dnv+HUP+tNXDxqsYr9R7LvpvDCmlKVGrpSlKURKUpREpSlESlKURKUpWbLCUpSlkSlKUsiUpSlkSlKVggoqLqb58k/Uj7grHCsjqb57k/Uj7grGjI8KuNL4LfRRcp75U0wOuBT9VP1V0LXdenfYQ7Q/DLhB2cdPWS6Q4jl5lSblKmvMzYDL3rTXktpd711Dm7u0Nkbh8goxyqy9qTthcL5nDF++2WyxHdQQpDbVvLsmE86tS0rG0Fl1TiUcgpXIDCcdSK8nCkeKUknzFSlAT0SkfUKjKnDG1rXRTG7DuLD912xVUUNnxss8f91z+2y6h7EOvNKI7Rd41/wAZLVE1MXLHJkoanNR3cTzMid042l8hCVoSHNpTgpSDjkDXpMvtc8JNSrj2W86cW7GkPobX6c/BUy0SoDesKeOAnOScZABrw5WlK0hKkBQBzg+Nfj0dknJbT/cK2yUhc3q2Osy1rWBC8sngsXSMLnb3zEfhe4jPbK4UWxg2226ZmMxmNzaG2HYSW8ZPyQHgMHr5c65gndpPhK/2zoeonrTY42kbPpSVI9Cfk29pp66OrZb+UpwMF4IRkZVuxnx5V5thpvp3KP7hUhAH5I9lahh93Nc5wJb8ug00tfRejUwW7kdr794m69sJXbm4PXmGqJOtECfEc+U27frM42r60mURXyy+2pwfRp6ZY7barfbIz0Z1lJTfLShlnckjcUokdBnJwCfYa8WdgJyUj9ZzQISM+on+4VnsL82cyXP/AKjbkvRqKXLYQ/8A6O6/La3XG0OyVZcUAtaldSo9SfbkmvXzs49qHhdw14G6C0pF0/HXKh6ZtaJ0iHPtzXeyTGQt7eFPpXvDilhW8BW7dnnXkMMgV+S2k81ISc+yumaAygBpsR5XXPDJG0kytzA8L2/Ze3Cu1ZwQQU6pc0XFTdDJLYcQ7bVygdoPeFaXicHOM56jFYjib2ouFnETQN/09M0mtapNslIjSbh6E6xFfLKg28olw7dqsHIGRjlXi8Wmh/Rp/uFQWEZCgkZHMHArk7A8DLnBB3GUaro7TS79VrwOY6L2j4L9pnQVj4aabUxoa4qmzLRDkTpNtiRy2++poKWSoLBUQpSs555z7axOve2Nw80PxG0rqdOklWpF7ROtdwkThHiOSHMMLY3uhR9QBDo3LO0KUkEpBKh44KiRlqK1x2lKPU7BX6bYZZz3TCU7uu3A/wCwrLcPyAMDu6NgGjTkfVYdUUzm3MfeO5Ljrzv/APV6Y9vDtNaV1bwngr0na02fVUW+2+4w5Et6IX5DbKnNyUJbcU442CsZIGzBxnJGd38Mu2Fw14ycPmFar0pdbm0SlD6oEFUlCHRggOpbJUy4MjKTyPVJKSK8YEtNpBw2lJPXAr6YU6fbJPpttnyYUnG3vozym3NviNySDg0kw7rGZS4X1Bu0WIOuoWWVNOH3Mfd4AONx5gr114/9tHhtwi4YyNPaR0jNbVco70eNCnNmI46HcpUttCjvUAVbi4Rt5Y5qIFZThn2xOE9m4OWgvNOXCM5DekOrcfjMxkJW+4VNOrecSlspyQQrx5DORnxwcK3nVyXVqcecO5a1HKlHzJPMmvwWkFe8oBx5jn/fXOMGaJGzh1nhpboBbKSDa3svZrYdWGO7Cb6uN78yV7J667evCDhfoRyTpmwNQpS21OxLep2M2HVnme7baWVOZJA3JGwZBKgK8dJs2XdJ0i63FwOS5rzkl9SU7UlxaipZA8MknlX8EhIJ2NhPlgDn9dfrn5VJ08BhblJv7WXJM+J7rxty+5P7oAoqShCSpSiEpAHMk8gBX33nTeotOqYa1DYLjbHJSC+wJsVxjvWwSkqTvA3AKBBI6EEHnWz+zCzeJHEGULfZoUyOxZLtJefkQm3VxXUW+T6MtpxQKm3S+WgkJIKlY64rEum5o7OqrHM05dO+t2tVSXJbzBS3BQuChCmV7vWQp1am14Iwe6z1Ir06Sz7W5LWBcKo6PObs9y/0dX301cPGqfo/51eP+rq++mrj41XsV1qPZdtN4aUpSo6y6EpSlLIlKUpZEpSlLIlKUpZFWPjL0V+mh+7u+7T4y9Ffpofu7vu1onJ86ZPnVh+FU/mont0q3t8Zeiv00P3d33afGXor9ND93d92tE5PnTJ86fC6fzTt0q3t8Zeiv00P3d33afGXor9ND93d92tE5PnTJ86fCqfzTt0q3t8Zeiv00P3d33afGXor9ND93d92tE5PnTJ86fC6fzTt0q3t8Zeiv00P3d33afGVor9Nj93d92tE5PnTJ86x8Kp/NO3SrZd71dp2bdHpMe47m17dp7pYzhIHl7K+E6nso/0z/DX/AAqhbjjFKkWDq2ho2C0Olc43V9Gp7IeszH/xr/hUjU1j8ZwH/wAa/dqg0r3mWOsKvp1NZM59M/w1/wAKn4T2T6Yf1tr/AIVQaUzJ1hV++E9k+mf4a/4U+E1k+mf4a/4VQaUzFOsKv3wmsf04fZr92nwmsn04fZr/AIVQaUzJ1hV++E1k+nD7Nf8ACo+FFlz/AJ2fs1fwqhUpmTrCr98J7L9LP2a/4UOp7L9N/wANf8KoNKZk6wq+nU1lP+nD7Nf8Kn4TWT6bj/4l/wAKoOaUzJ1hV/8AhNY/p4+zX7tR8JrJ9OH2a/4VQc0pmTrCr98JrJj/AD4fZr92oOprKf8ATP8ADX/CqFmlMydYVfRqey/Tf8Nf8Kn4T2T6Yfs1fwqg0pmTrCr78JbH9N/w1/wp8JrGP9O/w1/wqhUpmTrCr/8ACm0BCkIuJSlfygG14PlyxX6OrbcWFRvwwsNLUFqbCHAkq8yMYJ9ta+pWLp1rltLTms9N2+ep6VcghCmSjPdOHByk+CfYasnxlaK/TQ/d3fdrROaZPnXFPQxVD8773W5lXJGLBb2+MvRX6aH7u77tPjL0V+mh+7u+7Wicnzpk+davhVP5r126Vb2+MvRX6aH7u77tPjL0V+mh+7u+7Wicnzpk+dPhVP5p26Vb2+MvRX6aH7u77tPjL0V+mh+7u+7Wicnzpk+dPhVP5p26Vb2+MvRX6aH7u77tPjL0V+mh+7u+7Wicnzpk+dPhdP5p26Vb2+MvRX6aH7u77tK0Tk+dKfCqfzTt0qUpSpFcaUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIlKUoiUpSiJSlKIv//Z” width=”606px” alt=”arcs”/>

滿意動機模型是讓學生感受到學習的價值、學習的快樂,讓他們在學習中獲得滿足。 arcs arcs arcs arcs2025 信心動機模型即通過各種方式來增強學生的學習信心,維持學生對成功的渴望。